



### Update on SVT Rates And Multiplicity

#### Carlo Stella & Lorenzo Vitale

University & INFN Trieste



### Outline



- Add Layer 0 New Geometry and Incident Angle
- New SVT Study:
  - Mean Strip Multiplicity per Cluster
  - Strip Rate
  - Strip Multiplicity and dE per Strip vs Incident Angle

### Layer 0 New Geometry and Incident Angle

- Layer 0 New Geometry and Incident Angle has been added in Root Macro used for studying strip multiplicity and dE
- We are using full simulated event (BRUNO) with NEW Layer 0 Geometry:
  - Layer 0 now with 8 module
  - e+e-e+e- (pairs) 1.48M events

with new Geometry May 2011 production by Riccardo

### New SVT Study

- New data are compared with same values obtained by Riccardo
- "No Threshold cut" mean extreme low threshold, about zero.
- Particles, which don't deposit energy in SVT (deposited energy = 0), aren't considered.
- Cluster with no deposit energy in SVT are approximaly 0.09 %

#### Average strip multiplicity for e± from pairs per Cluster New files - No threshold cut

| Layer | RO PitchZ<br>(or +45°)<br>µm | Cenci<br><n> Z<br/>(or +45°)</n> | <n> Z<br/>(or +45°)</n> | RO Pitch φ<br>(or -45°)<br>μm | Cenci<br><n> ф<br/>(or -45°)</n> | <n> ф<br/>(or -45°)</n> |
|-------|------------------------------|----------------------------------|-------------------------|-------------------------------|----------------------------------|-------------------------|
| 0     | 50                           | 5.1                              | 5.4                     | 50                            | 4.1                              | 5.4                     |
| 1     | 100                          | 3.2                              | 4.7                     | 50                            | 6.5                              | 8.2                     |
| 2     | 100                          | 2.9                              | 4.4                     | 55                            | 5.9                              | 8.0                     |
| 3     | 100                          | 2.6                              | 4.8                     | 55                            | 4.9                              | 7.3                     |
| 4     | 210                          | 1.3                              | 2.1                     | 100                           | 2.0                              | 4.2                     |
| 5     | 210                          | 1.3                              | 1.9                     | 100                           | 1.8                              | 3.7                     |

#### Average strip rate for e± from pairs New files - No threshold cut

| Layer | RO PitchZ<br>(or +45°)<br>µm | Cenci Rate<br>Z or +45°<br>(MHz /<br>cm^2) | Rate Z or<br>+45°<br>(Mhz /<br>cm^2) | RO Pitch φ<br>(or -45°)<br>μm | Cenci Rate | Rate φ or<br>-45°<br>(MHz /<br>cm^2) |
|-------|------------------------------|--------------------------------------------|--------------------------------------|-------------------------------|------------|--------------------------------------|
| 0     | 50                           | 29.9                                       | 24.3                                 | 50                            | 23.3       | 24.3                                 |
| 1     | 100                          | 0.7                                        | 0.93                                 | 50                            | 1.5        | 1.61                                 |
| 2     | 100                          | 0.35                                       | 0.40                                 | 55                            | 0.72       | 0.73                                 |
| 3     | 100                          | 0.097                                      | 0.12                                 | 55                            | 0.19       | 0.19                                 |
| 4     | 210                          | 0.0076                                     | 0.0036                               | 100                           | 0.012      | 0.007                                |
| 5     | 210                          | 0.0041                                     | 0.0024                               | 100                           | 0.006      | 0.005                                |

#### Average strip multiplicity for e± from pairs per Cluster New files - No threshold cut – 30 Limited

| Layer | RO PitchZ<br>(or +45°)<br>µm | Cenci<br><n> Z<br/>(or +45°)</n> | <n> Z *<br/>(or +45°)</n> | RO Pitch φ<br>(or -45°)<br>μm | Сепсі<br><n> ф<br/>(or -45°)</n> | <n> φ *<br/>(or -45°)</n> |
|-------|------------------------------|----------------------------------|---------------------------|-------------------------------|----------------------------------|---------------------------|
| 0     | 50                           | 5.1                              | 4.9                       | 50                            | 4.1                              | 4.9                       |
| 1     | 100                          | 3.1                              | 4.0                       | 50                            | 6.5                              | 6.7                       |
| 2     | 100                          | 2.9                              | 3.7                       | 55                            | 5.9                              | 6.4                       |
| 3     | 100                          | 2.6                              | 3.6                       | 55                            | 4.9                              | 5.9                       |
| 4     | 210                          | 1.3                              | 1.9                       | 100                           | 2.0                              | 3.5                       |
| 5     | 210                          | 1.3                              | 1.9                       | 100                           | 1.8                              | 3.4                       |

\* = Value obtained with a max limit of 30 strip activated per cluster

#### Average strip rate for e± from pairs New files - No threshold cut – 90 Limited

| Layer | RO PitchZ<br>(or +45°)<br>µm | Cenci Rate<br>Z or +45°<br>(MHz /<br>cm^2) | Rate Z or<br>+45°<br>(Mhz /<br>cm^2) | RO Pitch φ<br>(or -45°)<br>μm | Cenci Rate | Rate <b>φ</b> or<br>-45°<br>(MHz /<br>cm^2) |
|-------|------------------------------|--------------------------------------------|--------------------------------------|-------------------------------|------------|---------------------------------------------|
| 0     | 50                           | 29.9                                       | 22.9                                 | 50                            | 23.3       | 22.9                                        |
| 1     | 100                          | 0.7                                        | 0.8                                  | 50                            | 1.5        | 1.1                                         |
| 2     | 100                          | 0.35                                       | 0.34                                 | 55                            | 0.72       | 0.53                                        |
| 3     | 100                          | 0.097                                      | 0.088                                | 55                            | 0.19       | 0.14                                        |
| 4     | 210                          | 0.0076                                     | 0.0032                               | 100                           | 0.012      | 0.0062                                      |
| 5     | 210                          | 0.0041                                     | 0.0024                               | 100                           | 0.006      | 0.0040                                      |

\* = Value obtained with a max limit of 90 strip activated per QED event

### Activate Strips vs Tangent of Incident Angle

22/07/11

C. Stella & L. Vitale

#### Strip vs Incident Angle (layer 0)



- Activated Striplets in layer 0 (+/- 45°
  z) vs Tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### Strip vs Incident Angle (layer 1)



- Activated Striplets in layer 1 (Z & Φ) vs Tangent of Incident Angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### Strip vs Incident Angle (layer 2)



- Activated Striplets in layer 2 (Z & Φ) vs Tangent of Incident Angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### Strip vs Incident Angle (layer 3)



- Activated Striplets in layer 3 (Z & Φ) vs Tangent of Incident Angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### Strip vs Incident Angle (layer 4)



- Activated Striplets in layer 4 (Z & Φ) vs Tangent of Incident Angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### Strip vs Incident Angle (layer 5)



- Activated Striplets in layer 5 (Z &  $\Phi$ ) vs Tangent of Incident Angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



15

22/07/11

10

C. Stella & L. Vitale

tan(Incident Angle)

### Deposited Energy per Strip vs Tangent of Incident Angle

22/07/11

C. Stella & L. Vitale

#### Energy per Strip vs Incident Angle (layer 0)



22/07/11

- Deposites energy per strip (+/- 45) in layer 0 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### Energy per Strip vs Incident Angle (layer 1)



- Deposites energy per strip (Z & Φ) in layer 0 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip,



#### Energy per Strip vs Incident Angle (layer 2 & 3)



22/07/11

C. Stella & L. Vitale

#### Energy per Strip vs Incident Angle (layer 4 & 5)



22/07/11

C. Stella & L. Vitale

# Backup Slides

22/07/11

C. Stella & L. Vitale

## Energy per strip distribution (layer 0)



22/07/11

C. Stella & L. Vitale

# Energy per strip distribution (layer 1)



22/07/11

C. Stella & L. Vitale

# Energy per strip distribution (layer 2)



22/07/11

C. Stella & L. Vitale

# Energy per strip distribution (layer 3)



22/07/11

C. Stella & L. Vitale

# Energy per strip distribution (layer 4)



22/07/11

C. Stella & L. Vitale

# Energy per strip distribution (layer 5)



22/07/11

C. Stella & L. Vitale

#### Average cluster rate for e± from pairs New files - No threshold cut

| Layer | RO<br>Pitch Z<br>(or<br>+45°)<br>µm | <n> Z<br/>(or +45°)<br/>Per<br/>Cluster</n> | Rate Z<br>or +45°<br>(Mhz /<br>cm^2) | RO<br>Pitch φ<br>(or<br>-45°)<br>μm | <n> ¢<br/>(or<br/>-45°)<br/>Per<br/>Cluster</n> | Rate <b>¢</b><br>or -45°<br>(MHz /<br>cm^2) | Cluster<br>Rate<br>(MHz /<br>cm^2) |
|-------|-------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------|
| 0     | 50                                  | 5.4                                         | 24.3                                 | 50                                  | 5.4                                             | 24.3                                        | 4.52                               |
| 1     | 100                                 | 4.7                                         | 0.93                                 | 50                                  | 8.2                                             | 1.61                                        | 0.20                               |
| 2     | 100                                 | 4.4                                         | 0.40                                 | 55                                  | 8.0                                             | 0.73                                        | 0.09                               |
| 3     | 100                                 | 4.8                                         | 0.12                                 | 55                                  | 7.3                                             | 0.19                                        | 0.025                              |
| 4     | 210                                 | 2.1                                         | 0.0036                               | 100                                 | 4.2                                             | 0.007                                       | 0.0017                             |
| 5     | 210                                 | 1.9                                         | 0.0024                               | 100                                 | 3.7                                             | 0.005                                       | 0.0013                             |

### dE/dx vs Tangent of Incident Angle

22/07/11

C. Stella & L. Vitale

### Digitization procedure

- Require particle identity (abs(SVTHits.pdg)==11 pairs)
- Use entrance and exit point to define path  $\Delta x$  in wafer and project it onto Z and  $R\Phi$
- · Use released energy  $\Delta E$  in active silicon
- · Share the energy among the "Digitized" strips dEi
- · First & last strip has random

flat dEi, the others the same

- Smear dEi with gaussian
- Apply one sets of thresholds

on dEi (=each strip):

4800 e- 0.30(0.20)MIP-L0(L1-5)



### dE/dx vs Incident Angle

• dE/dx study in 6 double layer of SVT

 Study was driven by FSSR2 (that provedes a 3 bit ADC information for each recorded hit)

• Threshold used:



#### dE/dx vs Incident Angle (layer 0)





- dE/dx in layer 0 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### dE/dx vs Incident Angle (layer 1)



- dE/dx in layer 1 vs tangent of incident angle

- Negative values are for particle going inwards

- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### dE/dx vs Incident Angle (layer 2)



- dE/dx in layer 2 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### dE/dx vs Incident Angle (layer 3)



- dE/dx in layer 3 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### dE/dx vs Incident Angle (layer 4)





- dE/dx in layer 4 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel



#### dE/dx vs Incident Angle (layer 5)



- dE/dx in layer 5 vs tangent of incident angle
- Negative values are for particle going inwards
- Real Geometry Modules for Strip, Cilindric Approximation for Pixel





Measures of deposited energy have some peaks associated with one strip measure. The lowest peak cause the bands showed in the plots

