

A. Polini

(on behalf of the ATLAS Muon Collaboration)

Outline:

- Detector Description
- Architecture and Special Features
- Status and Performance in 2011
- Operational Experience
- Future and Outlook

RPC2012

MontBlan **The ATLAS Detector** <mark>i a b k</mark> Barrel region 25 meters diameter Endcap region Endcap region 44 meters length

A. Polini

RPC 2012, February 5-10 2012, Frascati, Italy

The ATLAS RPC System

A. Polini

|η| < 1.1 BO 370k ch, 1100 units, BM 3650 m² det. area used for Trigger and Readout (η, φ)

- 3 concentric shells of chambers
 (2 for IOW-p_T + 1 for high-p_T)
- Divided in 16 sectors of 12 RPC chambers (with exceptions)
- One chamber is made of two layers of independent detectors each providing an η and φ coordinate
- ~4000 gas volumes in total in hostile environment
- ~8000 readout strip panels (3*10⁵ channels)

RPCs in 2011

2011 Run:

- Proton: 3.5 +3.5 TeV
- Integrated Luminosity > 5 fb⁻¹
- Peak inst. L 3.65x10³³ cm⁻²s⁻¹

RPC Generally running with

- active readout channels: 97%
- active trigger towers: 99.0 99.5% (0~3 off out of 404)

Disconnected Gas Gaps

- 47 (out of 3592) gaps disconnected from HV, mostly on BOL chambers (broken gas inlets)
- 23 gaps on HV Recovery channels

Detector usually very stableRPC Data Quality ~99%

√s_{NN} = 2.76 TeV

26/11

03/12

Day in 2011

10/12

Detector and Trigger

Detector and Trigger Coverage:

Strip map for pivot layer

Shown is the spatial coincidence between η and ϕ strips generating a high-p_T trigger

Outer layer strip map

Shown is the spatial coincidence between η and ϕ strips of both layers

Detector Efficiency

$10^{4} \sqrt{s} = 7 \text{ TeV} \int Ldt = 4.7 \text{ fb}^{-1}$ $10^{3} - Data 2010$ $10^{2} - Data 2011$ TLAS Preliminary $10^{4} - Data 2010$ TLAS = 0.4 - 0.6 - 0.8 - 1 Traction of dead strips

Huge improvement in detector efficiency

- HV working point (temperature and pressure) correction done via DCS
- Timing well centered
- The RPC can be used as a timing system
- See presentation by G. Chiodini

A. Polini

L1 Trigger Efficiency

- Efficiency plots convoluted with detector acceptance
- Geometric coverage varies and is on average ~ 80 %
- Detector coverage is smaller for high-p_T (requiring hits in the outer chambers)

RPC Trigger and Pileup

- 2011 LHC typically running with 50ns bunch spacing
- Late 2011 run: average pileup <µ> ~15
- Low- p_T (mu10) & hi- p_T (mu11) trigger efficiency shown as a function of μ
- Pileup average < µ > is calculated per Luminosity Block (60s)
- Plots made on the last part of 2011 data taking
- No significant dependence of the trigger efficiency on pileup

RPC Operation

2011 Running:

- System coherently integrated in Muon system (MDT, CSC, TGC) (single Muon Shift) and ATLAS
- Automatic HV handshake with LHC (HV STANDBY-READY)
- Monitor and automatic adjustment of HV set-points to T/p
- Monitor of detector noise, gap currents, correlation with trigger and luminosity
- Detailed monitoring of the infrastructure (to foresee hardware failures)
- Key role played by the

Detector Control System:

- Safe operation and detailed monitor the detector conditions
- Precise measurements of the current of each detector module:
- Current of Each Gas Gap, LV Current drawn,
 - Trigger Rates, Luminosity Correlations
- Large use of local sensors for monitoring of the environment:
- Atm. Pressure, Temperature, Humidity, Gas Flow

A. Polini

RPC Power and Control System

- Commercial Solution: CAEN EASY system
- Scalable system with huge number of HV/LV channels to control
- 4 Mainframes (SY1527) + branch controller boards in counting room
- Boards can operate in radiation area and magnetic field (up to 2kG)
- Dedicated modules: Power (A3486); High Voltage (12 KV, A3512AP); Low Voltage (A3009, A3025B)
- ADC module (A3801) with mean and peak measurement (~6400 ch.)

A. Polini

DAC 128-channel ADC (A3802) ~ 3100 channels

RPC HV Working Point Correction

Local T/P correction to the HV applied to the detector

- $V_{\text{applied}} = V_{\text{config}} * \rho \quad \text{where } \rho = \rho_{\text{T}} \cdot \rho_{\text{P}}$
- $\rho T = 1 + \alpha_T \cdot [(T/T_0) 1]$
- $\rho_{P} = 1 + \alpha_{P} \cdot [(P/P_{0})-1]$
- RPC ~280 HV channels, ~ 350 T sensors
- HV settings checked every few minutes

■ 2011 Settings:

- V_{config} = 9600 (9500 V*)
- $P_0 = 0.970 \text{ bar}$
- $T_0 = 24 °C$
- $\alpha_{\rm p} = 0.8; \alpha_{\rm T} = 0.5$
- (* To limit chambers with T > 26°; ~ 5% of ch.)

2010 Settings

A. Polini

BM.Confirm			BI	l Ton	nora	turo	Moas	urom	onte			
Sum of 16/02/2011 04:26	Colum		DN	i i en	ipera	luie	INICas	urenn	ente			
Row Labels 🕞	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
1	22,88		22,90		24,34			25,06		24,26		23,83
2		25,19		24,78		25,57	25,35				25,48	
3	24,75		24,01		25,91			26,02		24,47		24,59
4		27,48		26,18		26,33	27,69		25,39		27,10	
5	26,78		27,60		26,51			23,16		23,49		23,95
6		25,74		25,05		25,30	23,49		19,58		20,07	
7	23,79		24,99		24,41			24,63				24,19
8				25,97		24,65	24,06		25,06		25,91	
9	22,98		22,65		22,70			23,53		20,13		24,54
10		23,28		23,13		22,35	23,53		23,75		24,04	
11	23,13		23,45		21,53			23,03		22,84		23,05
12		21,43		21,43		21,74	21,61		21,53		22,48	
13	21,20		22,19		20,75			22,73		22,30		21,00
14				20,28		20,90	18,84		18,46		20,45	
15	22,46		22,98		23,30			22,02				22,07
16		24,16		24,09			22,35		23,50		24,39	

DCS and beyond: Background Maps

- The precision and high Granularity of the Gap currents can be used to
 - cross verify detector health; probe cavern background; measure inst. luminosity
- Typical current 100nA (no beam) single gap readout sensitivity 2nA
- Average charge per count 30pC at READY (for MIPS)
- HV Operation: Added delay (20 minutes) before going to STANDBY after a Beam dump from stable beams to study "after-glow" effects, activation,
- → Extrapolate to a luminosity of 10³⁴ cm⁻² t⁻¹ to validate MC simulations and assumptions on RPC high luminosity operation (resistivity, rate capability, …)

RPC average current readings over 1min, [µA/m²] DCS Flag A SIDE C Frac = 0.995 SIDE A **RPC TOWERS Overview** DCS Data HV 62 0.77 1.01 1.44 2.03 2.26 2.07 DCS Flag C Outer layer rac = 1.000 1.28 1.46 2.96 2.86 3.41 3.41 Select the Vir Busy in DAG Masked in DAQ Middle layer 13 RO 12 RO 4 3.52 3.15 2.96 2.38 1.56 1.20 11 HV 43 1.15 1.49 2.31 3.12 1.79 2.12 1.72 1.26 1.24 0.60 10 HV 42 0.80 1.07 1.22 1.66 2.08 56 1.98 1.86 1.28 1.26 0.88 ⁹ RO 41 0.86 1.14 1.33 1.72 1.98 3.30 → see Presentation by G. Aielli **Inner** layer 67 2.67 1.68 1.28 0 RO 32 HV 63 1.13 1.59 1.53 1.84 1.78 1.72 12

Italv

Luminosity and Afterglow

- Precise measurement of collisions-induced radiation measurement
- Independent and reliable measurement of Luminosity
- Stability and pileup dependence
- Afterglow cavern background measurement

see presentation by M. Bindi

Outlook on Infrastructure Consolidation

HV connectors:

- 4 failures in 2011 (no direct dead area due to two-layer redundancy)
- Connectors were replaced quickly in required shadow accesses
- ➔ Full refurbishment during present shutdown
- Noise Stability:

- \sim 5% of thresholds have been set to harder values due to e.m. radio-frequency pickup noise concentrated on the early installed chambers
- Improve grounding in feet sectors: installation of cable-stops to enhance Faraday cage

Gas Leaks:

A_Polin

- Situation under control
- → Fix of major gas leaks ongoing
- Gas System Consolidation:

Equalize gas flow via tuned impedances to the chambers as function their volume and integrated radiation

14

→ See poster by E. Pastori on Gas Distribution

New Powering Scheme

2011 Operation:

- During 2011 operation four occasions of partially melted connectors which required intervention
 - Anderson-Power connectors might develop resistance causing the observed faults
 - Daisy-chain connection on the power lines
 - Unbalanced currents due to common ground (-) between Service and Power lines
- Improved monitoring in DCS helped in cross-checking situation
- Helped in anticipating failures and plan controlled accesses

This shutdown: New powering scheme implemented

- Double redundancy + star connection (instead of daisy chain) + dedicated connector stops fully installed
- Other solutions (changing of backplane connectors, install monitoring shunt) were considered feasible during the present shutdown

Conclusions

- ATLAS RPCs have worked very well in 2011 delivering good trigger and data for physics
- Shifts and detector efficiency have been well integrated within ATLAS and MUONS and optimized by means of automatic controls and actions
- The detector redundancies along with the large monitoring capabilities have allowed to overcome promptly few weak points in infrastructure
- The detector control system is providing valuable data and tools on RPC detector physics and LHC running at higher luminosities
- Several activities during the shutdown shall improve the required robustness for 2012 and future running
- Great expectations for the running in 2012 and beyond

ebruary 5-10 20