

Thin-Gap RPC study for ATLAS L1Muon Upgrade

Liang HAN

University of Science & Technology of China (USTC)

On behalf of ATLAS Muon Collaboration

RPC2012 Workshop **INFN Frascati, Italy**

Deal with ATLAS L1Muon Trigger of Small Wheel @1e34, 14TeV, 25ns

• ~10kHz/cm² events rate at innermost, most due to soft γ/n

• <1mrad (<300 μ m) position resolution to improve online trigger pT cut

● <1ns time resolution to reject most fake hits

Efforts on RPC

- Thin-Gap RPC configuration
 - > Argonne + Michigan chamber: 1mm Glass plate & 1mm gap & 1mm strip
 - > Aiming at Time & Position Resolution study
 - ➢ SPS H8 test, µ beam@50Hz
- Low resistive plate study
 - Rome2 chamber of 2mm ATLAS Bakelite plate & 1+1mm bi-gap
 - Aiming for good performance under high rate environment
 - GIF test, Photon rate@7kHz/cm²

Prototype: ANL+UM chamber

- Gas: $C_2H_2F_4(94.7\%)$, Iso- $C_4H_{10}(5.0\%)$, SF₆ (0.3%) → Avalanche mode
- Gap: 2 mm → 1.2mm
- Plate : Glass, $5 \times 10^{12} \Omega \cdot cm$, ~ 1mm
- Readout pitch: $3cm \rightarrow 1.27mm$, strip width 1.0mm, 72 pitches
- Electronics: ATLAS Muon drift tube (MDT) readout, time resolution ~ 0.8 ns

University of Science & Technology of China (USTC)

SPS H8 beam test setup (Nov 2011)

Glass **RPC**, stationed in a frame without alignment calibration

本国科学技术大学 University of Science & Technology of China (USTC)

- Event selection: fast scintillator coincidence to trigger DAQ
- RPC hit: ADC>50 counts at 6600V
- Timing: RPC T₁ and Finger Sci. T₀ read by same MDT electronics

2012/02/09

University of Science & Technology of China (USTC)

TDC&ADC Distribution

• TDC: effective threshold -58.75mV

• ADC: charge integration gate 11ns

✓ Large signal ADC with charge diffusion

✓ No continuous spectrum → background free
✓ T₁ distribution → 25ns beam time uniformity

> Efficiency = (#evts of RPC fired)/(#evts of Scintillator triggered)

1mm gap \rightarrow HV **6.5kV** @ **97**% efficiency

hanl@RPC2012

中国科学技术大学

<u>University of Science & Technology of China (USTC)</u>

Time Resolution

• Time difference (T₁-T₀): Mezz 04 Chan 08 corrected time M04C08CorrTime Entries 576 Mean 47.91 120 RMS 2.108 x^2 (nd) 16.49/13 122.2 ± 7.0 100 47.88 ± 0.08 1.831 ± 0.072 20 TDC ✓ eliminate time-walk bias ✓ uncertainty as ~ 1.4ns • TA Slew correction: Mezz 05 Chan 15 corrected time vs ADC M05C15C VSADC Entries 559 400 r 50.78 Mean x Mean v 123.5 ADC RMS x 2.184 350 40.23

70

TDC

After TA Slew correction

Time resolution ~ 1.1ns

Dominated by readout electronics ~0.8ns

2012/02/09

300

250 200 150

100 50

中国科学技术大学

University of Science & Technology of China (USTC)

Residual Distribution

• Maximum Charge Strip

hanl@RPC2012

University of Science & Technology of China (USTC)

> 1st-Arrival vs. MaxQ:

- When 1st-Arrival strips can be distinguished, most of them coincide to the MaxQ ones in the events
- Due to TDC resolution, fraction of events have 2 stripes with "same" arrival time, i.e. non-1st Arrival

hanl@RPC2012

• First Arrival Time: with distinguishable 1st-Arrival events only

 σ_{1Arr} ~ 370 μm

• Same Arrival Time: non-1st Arrival events with indistinguishable earliest arrival

本国科学技术大学 <u>University of Science & Technology of China (USTC)</u>

• Centroid Finding: $Y(RPC) = (\sum Strip_i \cdot adc_i) / (\sum adc_i) \times 1.27mm$

 $\sigma_{\text{Centr}} \sim 250 \,\mu\text{m}$

- Plate: Glass $5 \times 10^{12} \Omega \cdot \text{cm}, 1 \text{mm} \rightarrow \text{Bakelite } 1 \times 10^{10} \Omega \cdot \text{cm}, 2 \text{mm}$
- Bi-gap: improve efficiency at high rate operation, HV $2 \times 6500V \rightarrow \sim 13000V$
- Electronics : new front-end, working at low gas gain to reduce operating current

> Efficiency × Acceptance 94%@11500V 9000 "with source" ∮ Ŧ 0.9 • "without source" 8000 ł Ŧ 0 OTotal counts x 18cm^2 (kHz) 0.8 7000 0.7 6000 0.6 0 5000 0.5 Total counts on 18 4000 0.4 0 3000 0.3 2000 0.2 1000 0.1 0 0 9000 10000 11000 12000 HV (V)

• Rate test is limited by the available source flux of GIF

• Thin gap of **1.2mm** results in good time resolution, **<1.1ns**, dominated by readout electronics precision

• With fine readout pitch as 1.27mm, position resolution ${\sim}300\mu m$ can be achieved, dominated by RPC alignment uncertainty

• Bakelite $10^{10}\Omega$ cm bi-gap chamber, fully functions in $7 kHz/cm^2$ high rate test

The design of **Thin-Gap RPC** could fulfill ATLAS L1Muon trigger upgrade requirement at high background rate, studies and efforts are on going in the right direction