

Proposed Trigger Scheme for the ICAL Detector of India-based Neutrino Observatory

S. Dasgupta*, N.K. Mondal, D. Samuel, M.N. Saraf, B. Satyanarayana, S.S. Upadhya Department of High Energy Physics, Tata Institute of Fundamental

Research, Mumbai 400005, India

*Corresponding author (sudeshnadasgupta@tifr.res.in)

Outline

The ICAL Detector

Modules	3
Module dimension	16 m x 16 m x 14.5 m
Detector dimension	48 m x 16 m x 14.5 m
Iron layers	151
Iron plate thickness	56 mm
RPC layers	150
Gap for RPC units	40 mm
RPC dimension	1840 mm x 1915 mm x 20 mm
RPC units/ layer/ module	64
RPC units/ module	9600
Total RPC units	28,800
Magnetic field	1.3 Tesla

Neutrino Interactions in ICAL

Neutrino interactions in iron produce muon and/ or hadrons.

Muon produces long track inside the detector, traversing many layers.

Hadrons give rise to showers, confined within a few layers.

The neutrino energy can be estimated from the muon momentum and the hit distribution of hadrons.

Design Goals of Trigger System

High detection efficiency Admissible chance trigger rate Feasibility of hardware implementation

RPC2012, INFN Frascati, Italy

Trigger Criteria

The Trigger Pyramid

Segmentation

Hierarchy of Trigger Scheme

Level0 Signals	• $TO_1 = S_{00} + S_{08} + S_{16} + S_{24} + S_{32} + S_{40} + S_{48} + S_{56}$ • $TO_2 = S_{01} + S_{09} + S_{17} + S_{25} + S_{33} + S_{41} + S_{49} + S_{57}$: • $TO_8 = S_{07} + S_{15} + S_{23} + S_{31} + S_{39} + S_{47} + S_{55} + S_{63}$
Level1 Signals	• $T1_1 = T0_1 + T0_2 + + T0_8$ • $T1_2 = T0_1 . T0_2 + T0_2 . T0_3 + + T0_8 . T0_1$ • $T1_3 = T0_1 . T0_2 . T0_3 + T0_2 . T0_3 . T0_4 + + T0_8 . T0_1 . T0_2$ • $T1_4 = T0_1 . T0_2 . T0_3 . T0_4 + + T0_8 . T0_1 . T0_2 . T0_3$
Level2 Signals	• $T1S_M = \Sigma T1_M$ • $T2S_{MxN/P}$
Level3 Signals	• T3S = Σ T2S _{MxN/P}
Global Trigger	• $GT_X = \Sigma T3S_X$, $GT_Y = \Sigma T3S_Y$ • $GT = GT_X OR GT_Y$

RPC2012, INFN Frascati, Italy

Chance Coincidence Rates

verage noise (200 cn	rate/ RPC strip 1 x 3 cm)	Coincidence Window (ns)	Set 1 1x5/8
;	Underground		2x4/8
te (Hz)	Rate (Hz)		3x3/8
200	10*	100	4x2/8

H _s	v _s	Segment Dimension	Total Segments	Trigger Criteria Set 1		Trigger Criteria Set 2	
				Surface Rate (Hz)	Underground Rate (Hz)	Surface Rate (Hz)	Underground Rate (Hz)
4 (2x2)	10	4 m x 4 m x 1 m	735	87	$2.7 \ge 10^{-5}$	$1.4 \ge 10^4$	8.5 x 10 ⁻²
	20	4 m x 4 m x 2 m	392	87	2.7 x 10 ⁻⁵	$1.4 \ge 10^4$	8.5 x 10 ⁻²
	40	4 m x 4 m x 4 m	196	87	2.7 x 10 ⁻⁵	$1.4 \ge 10^4$	8.5 x 10 ⁻²
9 (3x3)	30	6 m x 6 m x 3 m	180	$3.7 \ge 10^3$	1.1 x 10 ⁻³	$2.6 \ge 10^5$	1.6
	40	6 m x 6 m x 4 m	144	$3.7 \ge 10^3$	1.1 x 10 ⁻³	$2.6 \ge 10^5$	1.6
	60	6 m x 6 m x 6 m	108	$3.7 \ge 10^3$	1.1 x 10 ⁻³	$2.6 \ge 10^5$	1.6
16 (4x4)	40	8 m x 8 m x 4 m	100	$4.5 \ge 10^4$	1.4 x 10 ⁻²	$1.8 \ge 10^{6}$	11.1
	60	8 m x 8 m x 6 m	75	$4.5 \ge 10^4$	1.4 x 10 ⁻²	$1.8 \ge 10^{6}$	11.1
	80	8 m x 8 m x 8 m	50	$4.5 \ge 10^4$	1.4 x 10 ⁻²	$1.8 \ge 10^{6}$	11.1

RPC2012, INFN Frascati, Italy

Analysis Input

Algorithm

Trigger Efficiency Vs. Event Parameters

Trigger Efficiency Vs. Trigger Parameters (M, N)

Summary

- An architecture for the trigger scheme of the ICAL detector has been developed.
- Associated chance trigger rates are found to be acceptable for an optimal combination of the trigger parameters.
- The simulation results provide a good assessment of the detection efficiency of the trigger scheme.
- The nature of variation of trigger efficiency as a function of different trigger parameters are also understood.
- Validation of the scheme motivates to proceed towards the subsequent implementation phase.

References

- 1. INO Project Report, vol. 1, (2006).
- 2. M. Bhuyan, et al., Development of 2 m x 2 m size glass RPCs for INO, doi:10.1016/j.nima.2010.09.087, Nucl. Instr. and Meth. A, (2010).
- 3. C. Grupen and B. Shwartz, Particle detectors, 2nd Edition, Cambridge University Press, (2008).
- 4. A. Garfagnini, et al., The OPERA muon spectrometers, Nucl. Instr. and Meth. A 572 (1):177-180, (2007)
- 5. J. Allison, et al., Geant4-a simulation toolkit, Nucl. Instr. and Meth. A, 506(3):250-303, (2003).
- 6. D. Casper, et al., The nuance Neutrino Physics Simulation and the Future, Nucl. Phys. Proc. Suppl., 112:161-170, (2002).

Back-up Slides

μ Events

Efficiency Vs. Trigger Criteria

2/9/2012