

Calibration of the RPC working voltage in the CMS experiment

Silvia Costantini Ghent University

on behalf of the CMS Collaboration

5-10 February 2012

RPC 2012

The CMS Collaboration

~3400 scientists and engineers (including ~840 students) from 173 institutes in 40 countries

5-10 February 2012

RPC 2012

Silvia Costantini

http://cms.cern.ch

5.72 fb⁻¹ delivered by LHC and 5.20 fb⁻¹ recorded by CMS 2010 @ 7 TeV : ~36 pb⁻¹

Overall data taking e	fficiency ~	·91%.
Average fraction of	operatio	nal channels per
subsystem >98%	RPC	98.4
	CSC	98.3
	DT	99.4
	HF	99.9
	HE	100.0
	HB	99.9
	ES	95.9
	EE	98.6
	EB	99.1
	STRIP	97.8
	PIXEL	96.9

■Instantaneous luminosity above 3.5 · 10³³ cm⁻²s⁻¹

Certified data for physics: Golden 93%, Muon 96%.

The CMS RPCs

Dedicated trigger system both in the Barrel and in the Endcap

- Double gap chambers
 Single readout plane (strip)
 Operated in avalanche mode
- •Gas mixture:
 - 95.2% $C_2H_2F_4$ 4.5% iC_4H_{10} 0.3% SF_6

• HV:

- -RPCs were operated at one HV in 2010
- -Individual WPs chosen in 2011 (see later)

5-10 February 2012

RPC 2012

912 = 480 Barrel chambers + 432 Endcap chambers 109608 = 68136 Barrel strips + 41472 Endcap strips

Coverage up to $|\eta| < 1.6$

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

Barrel and Endcap chambers have different geometries and have been built in different construction sites with different construction techniques

Resolution and Efficiency studies: the method

- The same method is used to measure the spatial resolution (through the residuals) and the efficiency
- DT/CSC reconstructed segments are extrapolated to RPC strip planes and used to measure the efficiency to find an RPC hit ("probe") in the acceptance region around the extrapolated point
- Efficiency defined independently of final physics "objects", making use of DT/CSC segments of muon tracks (as "tags")
- New method: only DT/CSC segments associated to track hits are used

Spatial resolution

- In the range 0.8 1.3 cm, both for Barrel and Endcap
- Increasing with increasing strip pitch values, from the inner to the outer detector layers

HV Scan

- One of the main RPC efforts in 2011
- Define the optimal operating HV for each chamber
- 11 HV points: 8.5 9.7 kV with HV(P,T) correction already applied:

HV_effective = $HV \cdot P_0/P \cdot T/T_0$ (P₀ = 965 mbar, T₀ = 293 K) Example: ~10 mbar $\leftarrow \rightarrow$ ~1% P variation $\leftarrow \rightarrow$ ~ 100 V difference

• Efficiency dependence on HV: sigmoidal shape

$$\epsilon = \frac{\epsilon_{\rm max}}{1+{\rm e}^{-\lambda({\rm HV}_{\rm eff}-{\rm HV}_{50\%})}}$$

Example: P > P0 → HV_eff < HV → lower efficiency, lower cluster size

Efficiency vs. HV_Effective Typical RPC (endcap) chamber

"knee": HV where 95% of the asymptotic efficiency value is reached
Working Point (WP) can be defined taking into account the trigger algorithms in the barrel and endcap

Working Points for Barrel and EndCap

Note: since different chambers are fed by the same HV channel, a procedure of "averaging" in choosing the WPs was applied

Data taking details

- Negligible amount of data loss due to RPC HV calibration:
 ~3 pb⁻¹ out of 5.72 fb⁻¹
- Each point has needed only ~30' of low-luminosity collision data (10³⁰ 10³¹ cm⁻²s⁻¹)
- Dedicated data stream ('RPC Monitoring stream") containing ad-hoc info from RPC, CSC, DT and L1 trigger (RPC Digis and RecHits, DT Digis and 4DSegments, CSC 4DSegments, L1 Regional Candidates, L1 GMT), with negligible event size

RPC average Hit Efficiency vs. time Efficiency stability (Barrel)

- After HV(P) correction: fluctuations reduced to \pm ~0.5 %.
- •Stability vs. time and pressure
- •Chambers with known hardware problems are excluded
- •New method under validation: results are preliminary

Efficiency uniformity

- Local efficiency maps, left: Barrel chamber, right: Endcap chamber
- Low efficiency points correspond to the location of the spacers in the gas gaps

3D efficiency maps

CMS Preliminary 2011

•Left: Barrel Wheel, 2 innermost radial layers

•Right: Barrel Wheel, 5 radial layers (except RB4)

Yellow lines: joints in-between double gaps.

Lower efficiency regions due to masked or dead strips are shown in blue/yellow. Chambers off are represented in white.

Automatic HV(P) correction: cluster size stability

- Top: Cluster size at WP, before correction
- Bottom: comparison Before/After for Barrel
- Correction performed from July 2011
- HV dependence on P
 automatically taken into account

Cluster Size stability: Endcap

Summary and outlook

- HV scan has been extremely effective: optimal operating HV for each chamber
- Will be performed again in 2012 (only 3 pb⁻¹ lost in 2011)
- New method for calculating the efficiency
 - Average efficiency ~ 95%-96 % (results are still preliminary)
 - Efficiency stable w.r.t. pressure and time
- Automatic HV(P) correction in place since July 2011
 - Before HV(P) correction: ±1% efficiency fluctuations due to pressure variation in the CMS cavern.
 - After HV(P) correction: efficiency fluctuations reduced to ± ~0.5%