

The On-line monitoring of the ALICE Muon Trigger at LHC

Yongwook BAEK, on behalf of the ALICE collaboration

Laboratoire de Physique Corpusculaire (LPC), Université Blaise Pascal, IN2P3/CNRS, Clermont-Ferrand, France

ALICE Detectors

A Large Ion Collider Experiment, ALICE [1] is dedicated to study the properties of strongly interacting matter at extreme energy densities and temperatures, the so-called Quark Gluon Plasma (QGP), produced in nucleus-nucleus collisions at the Large Hadron Collider (LHC).

Muon Trigger Detector

The goal of the Muon TRigger system (MTR) is to detect muon tracks within \sim 800 ns with respect to ALICE requirements. The trigger algorithm in the MTR Local decision electronics allows to measure the (muon) track deviation, related to the transverse momentum p_t. The muon trigger signals, above two pt cuts in parallel, are delivered to the ALICE Central Trigger Processor (CTP).

 \checkmark Central detectors ($|\eta| \le 0.9$) identify hadrons, electrons and photons ✓ Muon spectrometer ($-4 \le |\eta| \le -2.5$) identifies muons

- with respect to the line aiming at the interaction center (Straight line: $p_t \rightarrow \infty$)
- The large deviation with respect to the straight line is the lower p_t track

Local Trigger Algorithm

Local trigger algorithm performs operations separately in the bending and nonbending plane.

✓ LO-X trigger algorithm (with horizontal strips)

- Measure deviation in strip units (± 8 strips ~ 0.5 GeV/c) for bending plane between MT1 and MT2
- Coincidence of hits from at least 3 out of 4 MTR planes, called 34 (or 44) coincidences

> Outputs

- XPos (5 bits): Position in X on MT1
- XDev (5 bits): Deviation between MT1 and MT2 (including the sign of deviation)

\checkmark LO-Y trigger algorithm (with vertical strips)

- Coincidence of hits from at least 3 out of 4 MTR planes

> Outputs

- trig-Y decision (1 bit)
- YPos: Position in Y on MT1 (4 bits)

✓ LUT (Look Up Tables) [2]

- Provides 2 p_t cuts: Low p_t and High p_t
- Each combination (XPos, XDev, trig-Y, YPos) has a corresponding LUT response in 2 bits

> Outputs

- 2 bits of trigger decision containing the deviation direction

Regional Trigger Algorithm

Regional trigger boards find (di-)muons using Local trigger information.

Global Trigger Algorithm

Global trigger board finds (di-)muon signal from Regional trigger information and sends L0 trigger signal to the CTP.

✓ Deliver 6 trigger signals to CTP

Expert Version

- SGL_LPT/SGL_HPT: Single muon Low p_t/Single muon High p_t
- LS_LPT: at least 2 muons Low p_t of like-sign
- LS_HPT: at least 2 muons High p_t of like-sign
- **US_LPT**: at least 2 muons Low p_t of unlike-sign
- **US_HPT**: at least 2 muons High p₊ of unlike-sign

Strip Pattern Display

Monitoring software environment

Aim is to monitor data-taking status and detector status. The monitoring software environment is based on Automatic MOnitoRing Environment (AMORE).

✓ Data flow

- DDL (Detector Data Link): Data from Front-End electronics is transferred via DDL
- LDC (Local Data Concentrator): Perform sub-event building for each sub-detector
 - GDC (Global Data Collector): Collect LDC data and perform final event building

✓ Monitoring Objects

- Raw data structure, data size, multiplicity of fired electronics
- Trigger efficiency
- Global trigger outputs
- Scaler data
- **Monitoring Versions**
- Shifter version: Simple and easy to check
- Expert version: Detailed check and information

Hit Multiplicity Local Trigger Algorithm Test (top plots) LPT/HPT response per board Total Local boards/station for X & Y and corresponding multiplicity strips

(bottom plots) Errors

Institut National de Prisique Nucléaire ET DE PRISIQUE DES PARTICULES

RPC2012, XI Workshop on Resistive Plate Chambers and Related Detectors Frascati, Italy, 5-10 Feb 2012