

High counting rate, differential, strip read-out, multi gap, timing RPC

<u>M. Petrovici¹, M. Petriş¹, V. Simion¹, D. Bartoş¹, G. Caragheorgheopol¹, F. Constantin¹, L. Rădulescu¹,</u>

J. Adamczewski-Musch³, I. Deppner², K. Doroud³, N. Herrmann², S. Linev³, P. Loizeau² and M. C. S. Williams⁴

¹NIPNE, Bucharest, Romania; ²Physikalisches Institut der Universität Heidelberg, Germany; ³CERN, Geneva, Switzerland; ⁴INFN, Bologna, Italy

> XI Workshop on Resistive Plate Chambers and Related Detectors INFN - Laboratori Nazionali di Frascati 5-10 February, 2012 1

OUTLINE

Short reminder

High granularity, symmetric, differential strip architecture
 architecture details

- efficiency
- time resolution
- two dimensional position resolution
- performance as a function of counting rate

Towards final architecture for CBM inner TOF Wall

Outlook

Short reminder Status of the field in 1999

Pestov Counter

Y.V.V. Pachomchuck et al., Nucl. Instr. And Meth. A 93(1971) 269

A. Devismes, et al. NIM 482A(2002)179

Advantages:

- -Very good σ_t (~25 ps)
- Position information: x, y
- Drawbacks:
- high pressure operation
- tails in the time spectrum
- needs special glass

Single Cell RPC

Advantages:

- Very good σ_t (~44 ps)
- commercial glass
- 1 atm pressure operation

Drawbacks:

- edge effects
- unrealistic for large area configuration

MGRPC - pad rows readout

Advantages:

- Very good σ_t (~60 ps)
- commercial glass
- -1 atm pressure operation

Drawbacks:

- edge effects, cross talk

- no position information over the pad sizes; tracking device is needed for position dependence correction 3

Short reminder Our proposal for a MSMGRPC - <u>autumn 1999</u>

First prototype, 30 cm length, built and tested <u>early 2000</u> with ⁶⁰Co source

M. Petrovici et al, VI Workshop on Resistive Plate Chambers and Related Detectors, Coimbra, Portugal, 26-27, November, 2001 M. Petrovici et al. NIM, A487(2002)337 M. Petrovici et al. NIM, A508(2003)75

Short reminder FOPI – RPC-TOF Barrel based on MSMGRPC

plastic Barrel

v (cm/ns)

20

0

10

10 -2

30

New challenge - CBM-TOF wall

Interaction rate 10⁷Hz (~1000 tracks/event)
TOF wall at 10 m from 3° to 27°
Iarge area (~150 m²)
Rate from 1 kHz/cm² (27°) to 20 kHz/cm² (3°)
Iarge counting rate
Hit density from 6·10⁻²/dm² to 1/dm²
huge number of cells for <5% occupancy

CBM Experiment Technical Status Report, Darmstadt, February 2005

6

particle	S/B ratio	Efficiency %	S/B ratio	Efficiency %
ω	0.13	1.8	0.3	1.6
φ	0.05	3.8	0.11	3.5
η	0.002	0.9	0.008	0.8
ρ	0.001	1.6	0.005	1.4

6

Single-ended – strip readout Pestov glass RPC

Towards higher granularity

- proton beam, 3.1 GeV, SIS

M.Petris et al, NIM A661(2012)S129

High granularity, differential, strip read-out, multi gap, timing RPC

2 x 7 gaps – cross section High voltage electrodes for both polarities

Symmetric two stack structure, differential readout

Active area 46 x 180 mm²

Electrodes: float glass: 0.55 mm

2 x 7 gas gaps; 140 µm thickness each gap

Readout electrodes: 1 double sided anode + 2 single sided cathodes

made from pcb with copper strips: 72 strips

2.54 mm strip pitch = 1.1 mm strip width + 1.44 mm gap width

RPC3:

- strip structure high voltage electrodes for both polarities in contact with a resistive layer

RPC5:

- strip structure high voltage electrodes for both polarities

\oplus high counting rate timing RPC

Electrodes: low resistivity glass: 0.7 mm (Chinese glass) 2 x 5 gas gaps; 140 μm thickness each gap

RPC4:

- strip structure high voltage electrodes for both polarities

In-Beam Tests

Experimental set-up:

- pion beam, 6 GeV/c momentum, PS-CERN
- 2 plastic scintillators 2 x 2 cm² overlap, used as reference (S1S2/S3S4)
- 2 plastic scintillators 1 x 1 cm² overlap used for active collimation (h1/v1&h2/v2)
- FEE: differential readout based on NINO chip developed within ALICE Collaboration
- digital converters: CAEN TDC V1290A
- information recorded for 16 strips readout at both ends for each RPC.

Active area = 18.694 *cm*²

Efficiency

<u>RPC4 – Chinese glass:</u>

NINO FEE1 **Th = 160 mV** NINO FEE2 **Th = 160 mV** <u>RPC5 – strip HV:</u> NINO FEE1 **Th = 130 mV** NINO FEE2 **Th = 130 mV** <u>RPC3 – resistive layer +strip HV:</u> NINO FEE1 **Th = 130 mV** NINO FEE2 **Th = 130 mV**

Cluster size

Time resolution using as reference a plastic scintillator readout at both ends

- RPC3 strip structure high voltage electrodes for both polarities in contact with a resistive layer
- the shown results are for the strip with the highest statistics

Time resolution using RPC4 (Chinese glass) vs. RPC5 (strip HV)

 $HV RPC4 = 10.6 kV \rightarrow 2.12 kV/gap$

HV RPC5 = 14.6 *kV* -> 2.086 *kV/gap*

Position information along the strip

RPC5 – horizontal strips

Position information across the strips

Method – Gaussian PRF

using the ToT of the most significant strip and the ToT of the two adjacent strips

$$x = w \frac{\ln Q_{L-1} - \ln Q_{L+1}}{2(\ln Q_{L-1} - 2\ln Q_L + \ln Q_{L+1})}$$

where:

 $(ToT)Q_{L} = the charge of the most significant strip$ $(ToT)Q_{L-1} = the charge of the left adjacent strip$ $(ToT)Q_{L+1} = the charge of the right adjacent strip$

Position reconstruction on a pitch width using three strips with signal

Position reconstruction across the strips using three strips with signal

Position resolution across the strips using three strips with signal

The track is defined by all three RPCs; the main strip is the same in all counters

<u>RPC5 – resistive layer + strip HV</u>

<u>RPC4 – Chinese glass</u>

<u>RPC5 – strip HV</u>

Time resolution and Efficiency vs. Counting rate for low resistivity glass MRPC (RPC4) – in beam test @ COSY

Time resolution is about 55 ps for low rates and goes up to 80 ps for 30 kHz/cm²

The efficiency is still higher than 90%

at 30 kHz/cm²

Towards RPC cell architecture for CBM TOF-RPC inner wall – construction details

7.112 mm pitch = 5.588 mm strip width + 1.524 mm gap width

Towards RPC cell architecture for CBM TOF-RPC inner wall - performance

Inner wall layout 300 mm x 96 mm glass electrodes

Conclusions & Outlook

In-beam test results show:

- detection efficiency better than 97%
- cluster size of 3 3.1 strips (a) 2.1 kV/gap
- time resolution better than $\lesssim 50$ psec
- position resolution along the strip of $\sim 4.5~mm$
- position resolution across the strips $\lesssim 500 \ \mu m$
- high counting rate performance:

(a) 100.000 particles/sec.cm²:

- time resolution < 80 psec

- efficiency > 90%

⇒ Differential, strip read-out, multi gap, RPC

based on low resistivity glass is the way to go