

ATLAS RPC time-of-flight performance

G. Chiodini - INFN Lecce On behalf of ATLAS Muon Collaboration

XI Workshop on Resistive Plate Chambers and Related Detectors INFN - Laboratori Nazionali di Frascati 5-10 February, 2012

Outlook

ATLAS RPC in p-p collisions at LHC

- Triggering
- Tracking

ATLAS RPC time measurement

- Simulation
- **Calibration**
- Resolution

Applications

- Background suppressions
- Particle velocity resolution

Conclusions

ATLAS RPC: Triggering

On-line hardware trigger

Figure 2: The Barrel Algorithm, illustrated on one quarter of the ATLAS experiment in the $r-\eta$ view.

- Identify µ candidates by fast geometrical coincidence pattern in two views (trigger roads)
- Select Region of Interest $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ by etaphi coincidence and 6 P_T thresholds per view.
- Assign bunch crossing number (25 ns)

On-detector coincidence Matrix

- On-detector trigger/readout electronics: Coincidence Matrix ASIC's (CM)
- 320 MHz clock = 8 times LHC clock Time res. = 3.125ns/sqrt(12)=0.9ns
- On-line time alignment with tracks both for trigger hits and readout hits (maximize trigger efficiency)

ATLAS RPC: Standalone tracking

Time is the 4th coordinate (dt=1.5ns):

Hit Time =TimeIP+TOF+delay along strip+fixed delay (cables+optical links+...)+calib. const. To evaluate the delay along strip the track projection on the gas volume is necessary . RPC cluster time = minimum hit time of the adjacent hits belonging to the cluster

G. Chiodini (INFN LE) - ATLAS RPC TOF - RPC2012 (LNF Frascati)

RPC time measurements in MC

05/02/2012

G. Chiodini (INFN LE) - ATLAS RPC TOF - RPC2012 (LNF Frascati)

RPC time calibration

Calibration criteria: the hit time of a relativistic track leaving the IP after signal delay subtraction is in average centered in the readout window (t_{PROMPT TRACK} =100 ns)

ATLAS RPC time resolution in pp

Data selection: Muon stream, beam stable and detectors OK, RPC clusters matched (deta,dphi<0.1) to combined muons (Inner detector+muon spectrometer)

RPC time resolution function

Time resolution in data (and pp simulation very similar):

RPC time spread b.w. layers same view

RPC time spread b.w. views same layer

RPC time resolution stability

Period(End)	<t<sub>n></t<sub>	<t_>></t_>	σT_n	σT_{ϕ}	intL	
B (23 Mar)	99.97	99.78	1.92	1.90	12 pb-1	
D (28 Apr)	98.42	98.23	1.92	2.10	166 pb-1	
E (3 May)	98.47	98.30	1.92	2.10	50 pb-1	Increasing
F(25 May)	98.50	98.31	1.92	2.10	137 pb-1	average
G(14 June)	98.49	98.30	1.91	2.09	518 pb-1	interactions
H(28 June)	98.28	98.48	1.90	2.10	265 pb-1	per crossing:
I(29 Jul)	98.67	98.50	1.92	2.06	334 pb-1	from about 5
J(4 Aug)	98.38	98.18	1.93	2.09	233 pb-1	to about 18
K(22 Aug	98.41	98.20	1.93	2.10	576 pb-1	
L(4 Oct)	99.15	99.03	1.86	2.04	1416 pb-1	
M(30 Oct)	98.45	98.23	2.29	2.40	1031 pb-1	\downarrow

- Off-line calibration uses run 183407 muon stream.
- The residual drift in time can easily be retrieved by off-line calibration.
- Resolution worsening in high pile-up condition is likely due to eta-phi "ghost" and fake tracks.

Background suppression

Time distribution of all **RPC trigger hits not matched to a combined track** but having a **good match (dR<0.5) with at least 6 MDT layers** (to remove flat uncorrelated background)

Particle velocity resolution

- Incremental distance between space points spatial averaged and ordered on the 6 layers.
- Space point time from eta and phi view average,

"Rule of thumb" ∆v=c² dt/L In Data dt=2ns/sqrt(2 HighPt layers) with IP: L=10m and ∆v about 13 mm/ns No IP: L=2.5 m and ∆v about 51 mm/ns

Conclusions

The RPC time resolution is very near to the single unit resolution for the whole ATLAS and during all 2011 real data taking

Still space for improvement

Simple algorithms are used for offline-calibration

- Very easy to implement on-line
- Possible RPC standalone but even more powerful if combined with other detectors

Good background rejection and particle velocity measurement possible still preserving good efficiency