

Simulations of an Innovative Time-of-Flight Detector for High-Energy Neutrons based on Iron-Less RPCs

Jorge Machado', Pamela Teubig¹, Daniel Galaviz¹, Alberto Blanco², Luís Lopes², Paulo Fonte², Rui Marques²

I - CFNUL, Lisbon

2 - LIP-Coimbra

07/02/12

GSI & FAIR

- Neutron Detector Design Parameters
- The RPC-based Detector
- The Iron-less Concept
- Physics Case
- Towards s406: Prototype Simulations

FAIR (Facility for Antiprotons and Ions Research)

FAIR (Facility for Antiprotons and Ions Research)

High-Energy Neutron Detector

Design Goals

- One neutron detection efficiency > 90%
- $\sigma_{\rm t} < 100 \ {\rm ps}$
- $\boldsymbol{\sigma}_{(x,y,z)} < 1 \text{ cm}$
- Active area of $2 \times 2 \text{ m}^2$
- Multi-hit capability up to 5 neutrons
- $\Delta p/p \approx 10^{-3}$
- ▶ Energy resolution of 20 keV for an excitation energy of 100 keV

Starting point

Jorge Machado Simulations of an innovative Time-of-Flight detector for high-energy neutrons based on iron-less RPCs

The Iron-less con

Gas 300 µm

- A geometry of a RPC with $2 \times 2 \text{ m}^2$
- 5 gaps of gas (84% of Freon, 10% of SF₆ and of 6% Isobutane)
- 6 glass plates (73% of SiO₂, 14% of Na₂O, 9% of CaO and 4% of MgO)
- Plastic case

Select Geometries:

Selected Geometries:

Detector configuration	One neutron detection efficiency
I mm / 300 planes	99.60%
2 mm / 150 planes	99.31%
3 mm / 100 planes	98.96%
4 mm / 75 planes	98.87%
5 mm / 60 planes	98.76%

Reconstruction of the neutron momentum

Folded Uncertainties

• $\sigma_t = 80 \text{ ps}$

- • $\Delta x = 3$ cm (width of the readout strip)
- $\bullet \sigma_y = 1 \text{ cm}$

• $\Delta z = 2.25$ cm (length of total plane thickness)

07/02/12

Physics Case

The ¹³²Sn(γ,n) ¹³¹Sn Coulomb Dissociation reaction simulated

- Detector placed at 12.5 m and 35 m from target
- $E_{rel} = 100 \text{ keV}$
- Energies of 200 AMeV, 600 AMeV and 1000 AMeV

Physics Case

E_{rel} spectrum for ¹³²Sn(γ,n)¹³¹Sn @ 200 MeV

Physics Case

E_{rel} spectra for ¹³²Sn(γ,n)¹³¹Sn

Prototype test

Experiment s406

- Deuteron-breakup reaction experiment at GSI with "monoenergetic" neutrons
- \bullet Quasi-free scattering reaction of a deuteron beam on protons using a CH_2 target
- Four different energies (200, 300, 500 and 800 MeV)

Prototype Design

Detection efficiency

Construction by LIP-Coimbra

4 modules of 5 gaps

4 modules of 2 gaps

One neutron detection efficiency: 14%

Prototype simulations

Momentum reconstruction

Δp for 400 MeV neutrons at 5 m

- The simulations have shown a **high efficiency and very good momentum resolution in the detection of one neutron** events for a wide energy range (between 200 MeV and I GeV).
- The **prototype** will consist of **8 planes** (with 2 different configurations) **to reach an efficiency of about 14%** for the range of energies considered.
- Based on simulations, the necessary **tools to analyze the data** from the **prototype test** will be developed.

Thank you!