

Archana SHARMA CERN

A bit LHC centric

Muon Chambers

Purpose: measure momentum / charge of muons Recall that the muon signature is extraordinarily penetrating

Muon chambers are the outermost layer

Measurements are made combined with inner tracker

Muon chambers in LHC experiments:

Series of tracking chambers for precise measurements

RPC's: Resistive Plate Chambers DT's: Drift Tubes; MDTs; CSC's: Cathode Strip Chambers TGC's: Thin Gap Chambers

Classic RPCs established successfully

How to survive the harsh environment at the LHC and upgrades; similar

High particle rates and cavern background

New chamber technologies for precision tracking and trigger

How to contain trigger rate

Cluster size compatible with trigger rate

Good resolution Good efficiency Good acceptance Completely understood detector, dead zones, supports,... Stability – Plateau vs HV, Gas content, temperature, humidity Optimized granularity for physics Minimum multiple scattering Minimum loss due to noise / background, fake tracks Minimum dead time Minimum aging (radiation, rate, materials, environment..)

CMS and ATLAS

Rates at Muon Trigger Upgrade

Parameter	LHC	HL-LHC
s	14 TeV	14 TeV
L	$10^{34}/{\rm cm^{2}s}$	$10^{35}/{\rm cm}^{2}{\rm s}$
bunch spacing	25ns	12.5ns
interactions/crossing	≈ 12	≈ 62
$dN/d\eta$ crossing	75	375
CMS particle flux	$\approx 1 \mathrm{kHz/cm^2}$	$\approx 10 \mathrm{kHz/cm^2}$
1 st muon layer		
$\eta \approx 2.4$		
CMS particle flux	$\approx 1 \mathrm{kHz/cm^2}$	$\approx 10 \mathrm{kHz/cm^2}$
1 st muon layer		
$\eta \approx 2.4$		
ATLAS particle	$\approx 1 - 10 \mathrm{kHz/cm^2}$	$\approx 1 - 15 \mathrm{kHz/cm^2}$
flux 1 st muon layer		
$\eta \approx 2.4$		
ATLAS particle	$\approx 1 - 10 \mathrm{kHz/cm^2}$	$\approx 1 - 15 \mathrm{kHz/cm^2}$
flux 1 st muon layer		
$\eta \approx 2.4$		

Forward Region	Rates Hz/cm ² LHC (10 ³⁴ cm ² /s)	High Luminosity LHC 2.3 x LHC	(10 ³⁵ cm ² /s) Phase II
RB	30	Few 100	kHz (tbc)
RE 1, 2, 3,4 η < 1.6	30	Few 100	kHz (tbc)
Expected Charge in 10 years	0.05 C/cm ²	0.15 C/cm ²	~ C/cm ²
RE 1,2,3,4 η > 1.6	500Hz ~ kHz	Few kHz	Few 10s kHz
Total Expected Charge in 10 years	(0.05- 1) C/cm ²	few C/cm ²	Several C/cm ²

Table 3: A comparison of typical coverage and performance parameters for muon detectors in ATLAS and CMS

Muon chamber	ATLAS	CMS
Drift Tubes	MDTs	DT s
-Coverage	$ \eta < 2.0$	$ \eta < 1.2$
-Number of chambers	1170	
-Number of channels	354000	
-Function Precision measurement		
Cathode Strip Chambers		
-Coverage	$2.0 < \eta < 2.7$	$1.2 < \eta < 2.4$
-Number of chambers	32	468
-Number of channels	31000	500000
-Function	Precision measurement	Precision measurement, triggering
Resistive Plate Chambers		
-Coverage	$ \eta < 1.05$	$ \eta < 2.1$
-Number of chambers	1112	912
-Number of channels	374000	160000
-Function	Triggering, second coordinate	Triggering
Thin Gap Chambers		
-Coverage	$1.05 < \eta < 2.4$	-
-Number of chambers	1578	-
-Number of channels	322000	-
-Function	Triggering, second coordinate	-

Muon-detectors SWPCs, MWPCs, DTs, CSCs, TGCs

Muon detectors

XI RPC Workshop FRAS

Classic - Resistive Plate Chamber

Figure 16: Efficiency measurements from RPCs for ATLAS (left) and CMS (right)

Figure 17: On top left we see the performance of ATLAS RPCs and in top right the efficiency for CMS RPCs.

Gas Monitoring

Figure 19: RPC Working point monitoring performed by the Gas Gain Monitoring system at CMS-SGX5 gas building. The dependance of environmental variable is actually removed online in order to spot the presence of any gas contaminant.

Robust Proven technology

Large systems Operational

Excellent time resolution

Over a decade of experience in construction, understanding of operation

Stability of operation demonstrated for moderate rates Gas contains Freon, Isobutane

Large complex (Expensive) and sophisticated gas system necessary

Humidification and gas purification

Spacers mandatory

Multi Gap RPCs -Glass

Figure 20: (left) Schematic of a multigap resistive plate chamber (right) Large MRPC module under construction for the ALCE Time Of Flight detector

Performance - MRPC

Figure 21: Performance of a multigap resistive plate chamber: time resolution and efficient with fraction of streamers

CBM HIGH RATE - TOF

Multi Gap RPCs - Phenolic

2mm-thick HPL plate

190-µm-thick polvester film

- Strip panel

- Graphite layer

4-gap RPC

Copper sheet

volume with two 1-mm thick gaps

Detector structures

Panel-shape multigap RPCs

~ Two separated gas envelopes + a strip panel Each gas envelope ~ 2 gaps in 4-gap RPCs 3 gaps in 6-gap RPCs

Conclusions

R&D on Oiled Phenolic 4- and 6-gap Panel-type RPCs

- (1) Prototype detectors: manufactured with the same technology as the one applied for the double-gap RPCs for the CMS experiments.
- (2) For 2-gap RPCs (Thr. ~ 200 fC), mean $q_e \sim 4.0$ pC at the mid of the plateau For 4-gap RPCs (Thr. ~ 150 fC), $q_e \sim 1.5$ pC For 6-gap RPCs (Thr. ~ 100 fC), $q_e \sim 0.9$ pC
- (3) Size of efficiency plateaus \geq 600 V for both 4- & 6-gap RPCs

(4) Technical issue: 6-gap structure seems to be marginal to manufacture real size panel-type detectors.
Low stiffness of HPL → Technical difficulty in manufacturing gaps
Adding water vapor deforms the thin HPLs (1.0 mm) → lost the gap uniformity

Aging issue: Small pulses will be really conductive to reduce radiationinduced aging at high rate environments

For 2-gap RPCs, aging study with an intensive gamma rate > 3 kHz cm⁻² → The high gamma rate caused Fast Degradation of gaps (H. C. Kim *et al.*, NIM A602 (2009) 771)

Future R&D scopes

MARGINS of OPERATION !

(1) QC based R&D for the manufacture procedure and parts

(2) Real-size prototype detector for high-η RE (RE1/1, RE2/1, RE3/1) RPCs with the 4-gap structure & the FEBs for the CMS RPCs

Dividing the gas volume into several gaps results in higher rate capability.

Advances in electronics

Addition of small amounts of SF6 increased the range of voltages in which the chambers can operate without streamer formation

Improvements have been achieved by using lower resistivity bakelite / glass ($10^{9-10}\Omega cm$).

Several small gas gaps limit time walk and resolution

using gas mixtures with a high content of freon gases, isobutane

Flatness quality; Stringent tech tolerances requirement

Humidity and environment conditions

Mechanical stiffness for large area

Sustained Operation

Aging Open Issue

MWPCs - THIN GAP CHAMBERs

Figure 22: Schematic of Thin Gap Chambers

Figure 23: Time resolution and efficiency for low and high pT muons for ATLAS TGCs

Upto 200 kHz/cm2 ! Space res 150 μm Time res 3.5-4 ns BUT use n-pentane !!

Proportional - Drift Tubes

Figure 26: With a radius of 1.5cm, a gas mixture of Ar/CO_2 at 3bar pressure, the space time relationship and results of resolution measurement for the ATLAS MDTs.

Drift Tubes in CMS

Figure 30: Drift tubes inserted in one of the wheels of CMS. The red part is the iron yoke of the CMS solenoid which houses the muon detectors; in (b) one can see the detector providing a muon measurement extending up to the interaction point with several points (blue) given from the four layers of drift tubes.

Figure 11: The ATLAS MUON Spectrometer Muon spectrometer is the outer layer (in blue) of ATLAS detector (\sim 22m high and 44m long); 5500m² covered by muon detectors or 400000 single drift tube detector, grouped in 1200 chambers

Cathode Strip Chamber

Figure 33: Cathode Strip Chambers mounted on a CMS Endcap

Advantages	Disadvantages
High intrinsic coordinate resolution ~ 0.5 mm	Large number of thin wires
easily achievable	CMS -over 10 ⁶ wires
Small sensitivity to backgrounds	Need to purge the system with gas mixture
Density is low, small Hydrogen concentration	
which translates into less neutron background	
High detection efficiency ~ 100 or more primary	
electron/ion pairs per mip-99.9% efficient	
Large signals	
Gas gains up to $\sim 10^5 - 10^6$	
Low intrinsic noise	
Rate capability	Inefficient zones
$\sim 10^6 \text{ particles/cm}^2 \text{sec}$	Near wires supports
Multi-hit capabilities in large drift cell	Near ends of the modules
Time resolution	Needs Reasonably clean room assembly facility
Single layer $\sim \max \operatorname{drift} \operatorname{time}$	EXB Effects
Double layer \sim a few ns	
Operation in medium magnetic fields	Ageing effects
Over two decades construction/operation experience	Gas impurities dependance
Possibility of dE/dxmeasurements	Single wire failure can affect all chamber
Reasonable cost	

What next ?

Why MPGD?

Limitations of wire-based chambers:

- Resolution: reduction of wire spacing <1 mm very difficult
 - mechanical tolerances
 - electrostatic repulsion ⇒ wire tension!

Rate capability: limited by build-up of positive space-charge around anode

⇒Reduction of cell size by a factor of 10

- Photolithography
- Etching
- Coating
- Wafer post-processing

MPGD in Running Experiments

Exp.	#	Туре	Readout	# of ch.	Size (cm ²)	Gas	σ _{space} (μm)	σ _{time} (ns)	ε (%)
COMPASS	22	GEM	2-D strips	1536	31×31	Ar/CO ₂ (70/30)	70	12	>97
	12	MM	1-D strips	1024	40×40	Ne/C ₂ H ₆ /CF ₄ (80/10/10)	90	9	>97
LHCb	24	GEM	pads	192	10×24	Ar/CO ₂ /CF ₄ (45/15/40)		4.5	>97
TOTEM	40	GEM	pads + strips	1536 + 256	30 × 20	Ar/CO ₂ (70/30)	~70 (θ)		>92

also CAST, NA48, PHENIX ...

MICRO-STRIP GAS CHAMBERS: ANTON OED (1988)

THIN METAL STRIPS ON INSULATING SUPPORT (GLASS):

DRIFT ELECTRODE

ANODE STRIP

CATHODE STRIPS

DUE TO SMALL PITCH AND FAST IONS COLLECTION, MSGC HAVE VERY HIGH RATE CAPABILITY:

NEW DEVELOPMENTS: MICRO-PATTERN GAS DETECTORS

MICROMEGAS AND GEM

MICROMEGAS Narow gap (50-100 µm) PPC with thin cathode mesh Insulating gap-restoring wires or pillars GAS ELECTRON MULTIPLIER (GEM) Thin metal-coated polymer foils 70 µm holes at 140 mm pitch

GEM

Gas Electron Multiplier

- Thin polyimide foil, typ. 50 μm
- Cu-clad on both sides, typ. 5 μm
- Photolithography: ~ 10⁴ holes/cm²
- Manufactured by CERN-TS-DEM

• *∆U*=300-500 V

- high E-field inside holes: ~ 50 kV/cm
- avalanche multiplication

[F. Sauli, NIM A386, 531 (1997)]

Micromegas

Micromesh Gaseous Structure

[I. Giomataris et al., NIM A376, 29 (1996)]

- Thin gap parallel plate structure
 Fine metal grid (Ni, Cu) separates conversion (~ 3 mm) and amplification gap (50-100 μm)
 - Very asymmetric field configuration: 1 kV/cm vs. 50 kV/cm

DRIFT

MICRO-MESH

 Saturation of Townsend coefficient (mechanical tolerances)

good energy resolution

HIGH RATES - GEM GEM RATE CAPABILITY:

Due to the small gaps and fast ion collection, MPGDs have very high rate capability.

The radiation hardness has been verified up to a collected charge of 20 C cm⁻², corresponding to an integrated flux of 4.10¹⁴ minimum ionizing particles.

LHCb MUON TRIGGER: Triple GEM with fast gas mixture (Ar-CO2-CF₄ 45-15-40)

~ **4 10¹⁴ MIPS cm⁻²** XI RPC Workshop FRASCATI, Italy 2012

HIGH RATES - MICROMEGAS

CONS UNIT OF THE PROPERTY OF T

High-flux experiments (COMPASS) deploy GEM and Micromegas detectors since several years without change in performances.

MICROMEGAS RATE CAPABILITY CURRENT VS X-RAY FLUX:

Proportionality: the current is proportional to the flux and the curves are parallel up to 8.10^6 mm⁻²s⁻¹ The maximum gain depends on flux: at 10^6 mm⁻²s⁻¹ it is about 10^3 .

38/28

XI RPC Workshop FRASCATI, I..., _...

MPGD CERTIFICATION

The maximum gain before discharge is almost the same for all MPGDs tested:

MEASURE GAIN WITH ⁵⁵Fe X-RAYS AND DISCHARGE PROBABILITY WITH INTERNAL ALPHA SOURCE FROM ²²⁰Rn

MPGD: ELECTRODE EDGES

In GEM, there is a region of high field at the metal edge of the holes; the field strength depends from the width of the "rim" (retreat of the metal). The field increases for large rims.

MICROMEGAS: PILLARS!

HOW to DEFEAT RAETHER?

Cascading several GEMs reduces the voltage needed on each foil for the same gain, and largely increases the maximum gain

²⁴¹Am a particles ~ 2.10⁴ e-l⁺ pairs

Studies: 2011 Large (Resistive) Micromegas Modules for ATLAS

Triple GEM

Figure 40: GEMs come in multiple configurations, double or triple GEM detectors depending on the number of amplifying stages used.

Studies: Large Triple GEMs for CMS

Figure 41: GEM foil production and test setup at the RD51 beam area.

Some results - 2011

Figure 42: GEM performance in 2010-2011 CMS-RD51 test beams.

Rate Capability/Aging - GEM

Performance Comparison Beam Tests 2010-2011

RET GEM

Talk by Peskov !

Advantages	Disadvantages
High intrinsic coordinate resolution 0.1-0.2mm	Smaller sectors for lowering discharge capacitance
easily achievable, minimal inefficient zones	
Small sensitivity to backgrounds	Need to purge the system with gas mixture
Density is very low, small H concentration	Possible gas leaks
Small EXB Effect	Need to supply gas during operation
Better spatial resolution in a strong	Needs Reasonably clean room assembly facility
Magnetic field	
Better two Hit separation	
Capability To suppress Ion feed back	
High detection efficiency ~ 100 or more primary	
electron/ion pairs per mip-99.9% efficient	
Large signals Gas gains up to ~ 104	
Low intrinsic noise	High Rate Capability $10^6/\text{mm}^2$ needs
clean room assembly facility	0
Time resolution \sim a few ns	
Operation in magnetic field proven	
Over one decade construction/operation experience	
Possibility of dE/dxmeasurements	
Reasonable cost	

THANK YOU!