

Archana SHARMA **CERN**

A bit LHC centric

Muon Chambers

Purpose: measure momentum / charge of muons Recall that the muon signature is extraordinarily penetrating

Muon chambers are the outermost layer

Measurements are made combined with inner tracker

Muon chambers in LHC experiments:

Series of tracking chambers for precise measurements

> **RPC's: Resistive Plate Chambers DT's: Drift Tubes; MDTs; CSC's: Cathode Strip Chambers TGC's: Thin Gap Chambers**

Classic RPCs established successfully

How to survive the harsh environment at the LHC and upgrades; similar

High particle rates and cavern background

New chamber technologies for precision tracking and trigger

How to contain trigger rate

Cluster size compatible with trigger rate

Good resolution Good efficiency Good acceptance Completely understood detector, dead zones, supports,.. Stability – Plateau vs HV, Gas content,temperature, humidity Optimized granularity for physics Minimum multiple scattering Minimum loss due to noise / background, fake tracks Minimum dead time Minimum aging (radiation, rate, materials, environment..)

CMS and ATLAS

Rates at Muon Trigger Upgrade

Table 3: A comparison of typical coverage and performance parameters for muon detectors in ATLAS and CMS

Muon-detectors SWPCs, MWPCs, DTs, CSCs, TGCs ……

XI RPC Workshop FRASC

Classic - Resistive Plate Chamber

Figure 16: Efficiency measurements from RPCs for ATLAS (left) and CMS (right)

Figure 17: On top left we see the performance of ATLAS RPCs and in top right the efficiency for CMS RPCs.

Gas Monitoring

Figure 19: RPC Working point monitoring performed by the Gas Gain Monitoring system at CMS-SGX5 gas building. The dependance of environmental variable is actually removed online in order to spot the presence of any gas contaminant.

Robust Proven technology

Large systems Operational

Excellent time resolution

Over a decade of experience in construction, understanding of operation

Stability of operation demonstrated for moderate rates

Gas contains Freon, Isobutane

Large complex (Expensive) and sophisticated gas system necessary

Humidification and gas purification

Spacers mandatory

Multi Gap RPCs -Glass

Figure 20: (left) Schematic of a multigap resistive plate chamber (right) Large MRPC module under construction for the ALCE Time Of Flight detector

Performance - MRPC

Figure 21: Performance of a multigap resistive plate chamber: time resolution and efficie with fraction of streamers

CBM HIGH RATE - TOF

Multi Gap RPCs - Phenolic

2mm-thick **HPL** plate

190-um-thick polyester film

Strip panel

Graphite layer

4-gap RPC

Copper sheet

volume with two 1-mm thick gaps

Detector structures

Oiled Phenolic Multigap Panel-type RPCs for CMS high-η triggers

Panel-shape multigap RPCs

~ Two separated gas envelopes + a strip panel Each gas envelope ~ 2 gaps in 4-gap RPCs 3 gaps in 6-gap RPCs

Conclusions

1

 Ω

R&D on Oiled Phenolic 4- and 6-gap Panel-type RPCs

- **(1) Prototype detectors: manufactured with the same technology as the one applied for the double-gap RPCs for the CMS experiments.**
- **(2) For 2-gap RPCs (Thr.** \sim **200 fC), mean** $q_e \sim 4.0$ **pC at the mid of the plateau For 4-gap RPCs (Thr. ~ 150 fC),** $q_e \sim 1.5 \text{ pC}$ **For 6-gap RPCs (Thr. ~ 100 fC),** $q_e \sim 0.9 \text{ pC}$
- **(3) Size of efficiency plateaus ≥ 600 V for both 4- & 6-gap RPCs**

(4) Technical issue: 6-gap structure seems to be marginal to manufacture real size panel–type detectors. Low stiffness of $HPL \rightarrow Technical$ difficulty in manufacturing gaps **- Adding water vapor deforms the thin HPLs (1.0 mm) → lost the gap uniformity**

(6) Aging issue: Small pulses will be really conductive to reduce radiationinduced aging at high rate environments

 For 2-gap RPCs, aging study with an intensive gamma rate > 3 kHz cm-2 → The high gamma rate caused Fast Degradation of gaps (H. C. Kim *et al***., NIM A602 (2009) 771)**

Future R&D scopes

MARGINS of OPERATION !

(1) QC based R&D for the manufacture procedure and parts

(2) Real-size prototype detector for high-η RE (RE1/1, RE2/1, RE3/1) RPCs with the 4-gap structure & the FEBs for the CMS RPCs

Dividing the gas volume into several gaps results in higher rate capability.

Advances in electronics

Addition of small amounts of SF6 increased the range of voltages in which the chambers can operate without streamer formation

Improvements have been achieved by using lower resistivity bakelite / glass $(10^{9-10}\Omega$ cm).

Several small gas gaps limit time walk and resolution

using gas mixtures with a high content of freon gases, isobutane

Flatness quality; Stringent tech tolerances requirement

Humidity and environment conditions

Mechanical stiffness for large area

Sustained Operation

Aging Open Issue

MWPCs - THIN GAP CHAMBERs

Figure 22: Schematic of Thin Gap Chambers

Figure 23: Time resolution and efficiency for low and high pr muons for ATLAS TGCs

Upto 200 kHz/cm2 ! Space res 150 μ m Time res 3.5-4 ns BUT use n-pentane !!

Proportional -Drift Tubes

Figure 26: With a radius of 1.5cm, a gas mixture of $Ar/CO₂$ at 3bar pressure, the space time relationship and results of resolution measurement for the ATLAS MDTs.

Drift Tubes in CMS

Figure 30: Drift tubes inserted in one of the wheels of CMS. The red part is the iron yoke of the CMS solenoid which houses the muon detectors; in (b) one can see the detector providing a muon measurement extending up to the interaction point with several points (blue) given from the four layers of drift tubes.

Figure 11: The ATLAS MUON Spectrometer Muon spectrometer is the outer layer (in blue) of ATLAS detector (\sim 22m high and 44m long); 5500m² covered by muon detectors or 400000 single drift tube detector, grouped in 1200 chambers

Cathode Strip Chamber

Figure 33: Cathode Strip Chambers mounted on a CMS Endcap

What next?

Why MPGD?

Limitations of wire-based chambers:

- Resolution: reduction of wire spacing <1 mm very difficult
	- mechanical tolerances
	- \rightarrow electrostatic repulsion \Rightarrow wire tension!

• Rate capability: limited by build-up of positive space-charge around anode

⇒Reduction of cell size by a factor of 10

- Photolithography
- \cdot Etching
- Coating
- Wafer post-processing

MPGD in Running Experiments

also CAST, NA48, PHENIX ...

MICRO-STRIP GAS CHAMBERS: ANTON OED

(1988)

THIN METAL STRIPS ON INSULATING SUPPORT (GLASS):

DRIFT ELECTRODE

DUE TO SMALL PITCH AND FAST IONS COLLECTION, MSGC HAVE VERY HIGH RATE CAPABILITY:

NEW DEVELOPMENTS: MICRO-

MICROMEGAS AND GEM

MICROMEGAS Narow gap (50-100 µm) PPC with thin cathode mesh Insulating gap-restoring wires or pillars

GAS ELECTRON MULTIPLIER (GEM) Thin metal-coated polymer foils 70 µm holes at 140 mm pitch

GEM

Gas Electron Multiplier

- Thin polyimide foil, typ. 50 μ m
- Cu-clad on both sides, typ. 5 µm
- Photolithography: ~ 10⁴ holes/cm²
- Manufactured by CERN-TS-DEM

\cdot $\triangle U = 300 - 500$ V

- high E-field inside holes: \sim 50 kV/cm
- avalanche multiplication

[F. Sauli, NIM A386, 531 (1997)]

Micromegas

Micromesh Gaseous Structure

[I. Giomataris et al., NIM A376, 29 (1996)]

- Thin gap parallel plate structure • Fine metal grid (Ni, Cu) separates conversion $($ \sim 3 mm) and amplification gap $(50-100 \mu m)$
	- Very asymmetric field configuration: 1 kV/cm vs. 50 kV/cm

DRIFT

MICRO-MESE

Saturation of Townsend coefficient (mechanical tolerances)

 \rightarrow good energy resolution

HIGH RATES - GEM *GEM RATE CAPABILITY:*

Due to the small gaps and fast ion collection, MPGDs have very high rate capability.

The radiation hardness has been verified up to a collected charge of 20 C cm⁻², corresponding to an integrated flux of 4.10¹⁴ minimum ionizing particles.

LHCb MUON TRIGGER: Triple GEM with fast gas mixture (Ar- $CO2$ -CF₄ 45-15-40)

20 C/cm²

XI RPC Workshop FRASCATI, Italy 2012 *~ 4 10¹⁴ MIPS cm-2*

HIGH RATES - MICROMEGAS

High-flux experiments (COMPASS) deploy GEM and Micromegas detectors since several years without change in performances.

MICROMEGAS RATE CAPABILIT CURRENT VS X-RAY FLUX:

Proportionality: the current is proportional to the flux and the curves are parallel up to 8.10^6 mm⁻²s⁻¹ The maximum gain depends on flux: at 10⁶ $mm^{-2}s^{-1}$ it is about 10³.

38/28 MMT

MPGD CERTIFICATION

The maximum gain before discharge is almost the same for all MPGDs tested:

MEASURE GAIN WITH ⁵⁵Fe X-RAYS AND DISCHARGE PROBABILITY WITH INTERNAL ALPHA SOURCE FROM ²²⁰Rn

MPGD: ELECTRODE EDGES

In GEM, there is a region of high field at the metal edge of the holes; the field strength depends from the width of the "rim" (retreat of the metal). The field increases for large rims.

MICROMEGAS: PILLARS!

HOW to DEFEAT RAETHER?

Cascading several GEMs reduces the voltage needed on each foil for the same gain, and largely increases the maximum gain

²⁴¹Am a particles ~ 2.10⁴ e-I ⁺ pairs

Studies: 2011 Large (Resistive) Micromegas Modules for ATLAS

Triple GEM

Figure 40: GEMs come in multiple configurations, double or triple GEM detectors depending on the number of amplifying stages used.

Figure 41: GEM foil production and test setup at the RD51 beam area.

Some results - 2011

Figure 42: GEM performance in 2010-2011 CMS-RD51 test beams.

Rate Capability/Aging - GEM

Performance Comparison Beam Tests 2010-2011

RET GEM

Talk by Peskov !

THANK YOU!

CONCLUSIONS ON THE EXPLORATION