

Aging and conductivity of electrodes for high rate tRPCs from an ion conductivity approach

M. Morales¹, C. Pecharromán², G.M. Osoro³, L.A. Díaz⁴, and J.A. Garzón¹

- 1. University of Santiago de Compostela (LabCAF/USC)
- 2 Institute of Materials Science Research of Madrid (ICMM /CSIC)
 - ³ École Nationale Supérieure de Chimie de Paris (ENSCP)
- 4 Nanomaterials and Nanotechnology Research Center (CINN/CSIC), Spain

INFN, Frascati, 2012, miguel.morales@usc.es

Outline

- Outlook of electric high rate RPCs plate requirements
- Dielectric constant measurements
- Conductivity types on insulators
- Processes activated by temperature
- Ionic current model
- Ionic aging model

Plate impedance effects for high rate RPCs

- DC Model : Disregard perturbation effects, so observables are just function of the **primary rate** (ϕ_p) and **the column resistivity** (pd).
- Resistivity: Low pd values improves rate capability (k) :

$$k = \frac{\rho_0 d_0}{\rho d}$$

Permittivity: Characteristic dielectric perturbation time should be checked:

$\tau \sim RC$

• Higher the resistivity higher the loose of effective E field in the gap, therefore less efficency at high rates.

$$V_{gap} = I R_{plate} - \phi_p \rho d$$

But

• Low resistivity: Greater current paths and more death time as PPC limit is approached.

Materials Under Test						
		Materials	Provider			
GLASSES						
		Soda Lime Silicate Glasss (SLS Glass)	Hades			
		Low Resistive Silicate Glass (LRS Glass)	Tsinghua University			
POLYMERs						
		Bakelite	CMS			
CERAMICs						
	2	Mullite/Mo	Developed in colaboration with ICMM/CSIC			
		Ferrite Ceramic	Developed in colaboration with ICMM/CSIC			
5 INFN, Frascati 2012, M. Morales, LabCAF/Univ.						

Measurement Setups

From the simplest one:

LCR HP4284A IMHz

Dielectric Constant

Parallel plate capacitor:

$$C = \varepsilon_r \frac{A}{d}$$

Energy stored in the plate:

 $W = \frac{A}{2d} \varepsilon_r V^2$ Could damage the FEE or even cause material breakdown.

 $E_{\alpha}\delta(t)$

Materials Dielectric Constant

Insulator Conductivity Types

Controlled by the Insulator

	J(V)	J(T)			
Ohmmic	J ~ V	$\log(J/E) \sim I/T$			
Poole-Frenkel	log(J/V) ~ V ^{1/2}	log(J) ~ I/T			
Space Charge Limit	J ~V ²	T add carriers			
Ionic	J ~ V	$\log(J/E) \sim I/T$			
Controlled by the electrode					
	J(V)	J(T)			
Tunelling	Strong rising with V	Almost independent			
Field Emission	$J \sim V^2 \exp(-b/V)$	Almost independent			
Schottky	log(J/V) ~ V ^{1/2}	$\log(J/T^2) \sim I/T$			

9 Física de dieléctricos – J. M. Albella , 1984

Conductivity Types Identification Issues

- Usually more than one conductivity type is involved.
- **Relaxation times** longer than we would like.
- Keep in the right range of electric field and temperature to identify the conductivity type.
- Not homogeneus effective electric field inside the material due to phases of different conductivities.
- Different conductivity types could arise changing the gas environment.
- Interference from the resistence or the capacities of the measurement devices.

```
INFN, Frascati 2012. M. Morales
LabCAF/Univ. Santiago de Compostela
```

.

Arrhenius process: Activation Energies

Conductivity (σ):

Ea related with the activation energies for **deffects generation** and **ion migration**

Material	Ea(eV)
LR S Glass	0.59
Mullite/Mo	0.70
Bakelite	0.84
SLS Glass	0.84
Ferrite Ceramic	0.89

Activation Energies: gas and temperature effects

LR S Glass T>70°C and Bakelite T>50°C, Ea shift

INFN, Frascati 2012. M. Morales LabCAF/Univ. Santiago de Compostela

1/kT (eV-1)

D

V (V)

Ionic Current

 $J = nq \mu$

[Hyde and Tomozawa, 1986] $J = nq \left\{ 2l v_0 e^{-\frac{W}{kT}} \sinh \left(\frac{qEl}{2kT}\right) \right\}$ Mobilitiy J: Current density n: Number of charge carriers q: lon charge μ: carrier movility I: Mean free path ν₀: natural frequency in the well (10¹³HZ) W: barrier potential E: Electric Field K: Boltzman constant T:Temperature

Fitting variables:

$$J = C_1 \sinh \left(C_2 E \right) \longrightarrow \begin{array}{l} C_1 = 2 l q v_0 n e^{-\frac{W}{kT}} \\ C_2 = \frac{q l}{2 kT} \end{array} \xrightarrow{\rho = \frac{1}{C_1 C_2}} \text{Resistivity} \\ l = \frac{2 kT}{q} C_2 \text{ Mean Free Path} \end{array}$$

Ionic Current Fitting

	C ₁ (A m- ²)	C₂(m𝒾¹)	Rho(Ohm m)	l (m)
SLS Glass	1.7±0.2 ·10 ⁻⁴	1.4±0.1 ·10 ⁻⁷	4.2 ±0.7 ·10 ¹⁰	7.0 ±0.6 ·10 ⁻⁹
LR S Glass	1.00±0.01 ·10 ⁻²	1.57±0.01 ·10 ⁻⁷	6.4 ±0.1 ·10 ⁸	7.9 ±0.2 ·10 ⁻⁹
Bakelite	3.3±0.4 ·10 ⁻³	7.8±0.7 ·10 ⁻⁷	3.8±0.8 ·10 ⁸	4.0±0.4x ·I 0 ⁻⁹
Mullite/Mo	2.0±0.1 ·10 ⁻³	2.0±0.1 ·10 ⁻⁶	2.5 ±0.3 ·10 ⁸	1.0 1±0.08 ·10 ⁻⁷

Simple Ionic Ageing Model

Carrier density loss:

$$\frac{d\,n}{d\,t} = -\frac{J}{q\,d}$$

Low or moderate field **aproximation**: $qEl \ll kT$

$$J(t) = l^{2}(t) n(t) \frac{Ev_{0}q^{2}}{kT} e^{-\frac{W}{kT}}$$
$$n(t) = \frac{J(t)}{l^{2}(t)} \cdot \frac{kT}{Ev_{0}q^{2}} e^{\frac{W}{kT}}$$

Let the mean free path be:

$$l(t) = l_0 \left(1 - \frac{t}{\tau_1} + \frac{t^2}{\tau_2^2}\right)$$

Final current time function from the model:

$$J(t) = J_0 \left[1 - 2 \frac{t}{\tau_1} + t \left(\frac{1}{\tau_1^2} + \frac{1}{\tau_2^2} \right) \right] e^{\frac{t}{\tau_n} \left[1 - \frac{t}{\tau_1} + \frac{t^2}{3} \left(\frac{1}{\tau_1^2} + \frac{1}{\tau_2^2} \right) \right]}$$

Fitting to the ionic aging model

$f_i = \frac{1}{}$		J ₀ (A m ⁻²)	f _l (Hz)	f ₂ (Hz)	f _n (Hz)
$ au_{i}$	SLS Glass	4.2±0.6 ·10 ⁻³	3.8±0.6 ·10 ⁻²	3.1±0.8 ·10 ⁻²	1.8 ±0.3 ·10 ⁻¹
	LR S Glass	4.9±0.3 ·10 ⁻³	1±1 ·10 ⁻²	1.1±0.3 ·10 ⁻²	1 ±4·10 ⁻²
	Bakelite	4.45±0.06 ·10 ⁻⁶	6.8±0.3 ·10 ⁻²	3.20±0.05 ·10 ⁻²	2.1 ±0.1 ·10 ⁻²
	Mullite/Mo	3.7±0.2 ·10-3	3±6·10 ⁻³	5±1 ·10 ⁻²	8 ±1 ·10 ⁻²

INFN, Frascati 2012. M. Morales LabCAF/Univ. Santiago de Compostela

Resistivity chage aging

Note: Expected Charge transfered by the CBM RPCs

 $Q/A = 5y \times 0.5 \times 20 \text{ KHz/cm}^2 \times 1.5 \text{pC/gap} = 2C/\text{cm}^2$

Summary

- Methods from Material Science have been introduced to test some RPCs plates and other materials.
- Dielectric constant up to IMHz have been measured
- Activation energies have been used to set the temperature limit for testing material ageings.
- An Ionic approach model for the J(E) and J(t) has been proposed to match Ionic conductivity involved in the current.

TODO:

- Add other effects more than the charges carries depletion to the ageing model, as space charge or electrode pasivation.
- Test other mean free path functions.
- Measure bakelite ageing with a fair setup, lower temperature.
- > Put at least one ceramic used for high rate RPCs under test.
- Test impedances up to GHz.

Thanks

LIP- Coimbra:

- Paulo Fonte
- Alberto Blanco
- Luis Lopes

GSI:

Diego González Díaz

CMS Experiment:

- Dr.Stefano Bianco / Laboratori Nazionali di Frascati dell'INFN
- Dr. Paolo Vitulo / Univ. Pavia- INFN
- Dr. Paulo Montagna / Univ. Pavia-INFN
- Institute of Materials Science Research of Madrid (ICMM /CSIC)
- Nanomaterials and Nanotechnology Research Center of Asturias (CINN/CSIC)

Thank you for your attention!!

[Hyde and Tomozawa, 1986] Hyde, J.M. and M. Tomozawa, The Relationship Between The Dielectric Relaxation And The High-Field Conduction Of Glasses. Physics and Chemistry of Glasses, 1986. 27(4): p. 147-151.

Backup Slides

	J_0	$ au_n$	$ au_l$	t	E	C·c
	(Am ⁻²)	(days)	(days)	(days)	(V/m)	m ⁻²
Mu/M	0.006	19.76	112.2	10	2.	0.4
o (r.t.)	6		4		2·10 ⁵	4
Glass	0.002	18.85	184.3	36	9.	0.2
(50°C)	7		4		6·10 ⁶	2

	C_1	C_2	ρ	l
	(Am ²)		$(\Omega \cdot m)$	(nm)
11%	(2.05±0.	(1.9±0.1)·	2.6	98
Mu/Mo	2).10-3	10-6	108	
12%	(2.18±0.	(1.86±0.0	2.5.	93
Mu/Mo	1).10-3	9)·10 ⁻⁶	108	
13%	(1.47±0.	(5.0±0.2)·	1.3.	26
Mu/Mo	2).10-3	10-6	108	0
Fresh	(2.0±0.1	(1.23±0.0	4.1.	6
Float glass).10-4	5).10-7	1010	
Aged	(1.6±0.3	(1.5±0.1)·	4.1.	8
Float glass).10-5	10-7	1011	

Cuts

$$\ln \sigma = \ln \sigma_0 - \frac{Ea}{kT}$$
In band theory:
$$Ea = \frac{E_g}{2}$$
Eg: Gap band energy

lonic ageing model simplification:

If $t_l >> t_n$ then the solution: $J = J_0 e^{-\frac{t}{\tau_n} \left(1 - \frac{t}{\tau_l}\right)} \tau_n = \frac{d k T e^{\frac{W}{kT}}}{l_0^2 v_0 q E}$