

Development of small, easy to build and low gas consumming timing RPCs

J. Luís Rodríguez², **Miguel Morales¹**, N. Teigel², D. Ramos², J. A. Garzón¹.

- 1. LabCAF/Univ. de Santiago de Compostela
- 2. Department of Particle Phisics/Univ. Santiago de Compostela

INFN, Frascati, February 2012, miguel.morales@usc.es

Motivation

- Get rid of bulky gas systems to develope a detector with good time resolution in a small shape for:
 - Planar low-rate alternative to Geiger Müller counters
 - Sub ns-resolution detector for occasional uses
 - Cheap and easy-to-build detector for Educational purposes
 - Others...

- Apart from the typical gas Issues:
 - **Economic reasons**. Gas systems and facilities cost money.
 - Environmental unfriendly, R134a, SF6 are strong green house effect gases.
 - Lack of portability. Gas systems have an important weight and volume.

tRPC vs Geiger Counter

Typical size (mm)	40 (I) · 40 (I) · 0.3 (w)	10(d) · 40(l)
Typical volume: V	$V_{\rm RPC} = 4.8 \cdot 10^2 \rm mm^3$	$V_{GM} = 3.14 \cdot 10^6 \text{ mm}^3$
Edge surface (mm):S	$S_{RPC} = 4 \times (I \cdot W) = 48 \text{ mm}^2$	$S_{GM} \sim 0 \text{ mm}^2$
S/V ratio	0.1 mm ⁻¹	~0
Typical gas mixture	Freon R134a/SF6/iButane (85/10/5)	Neon/Argon + Halogen gas
Working mode	Avalanche	Geiger-Müller
Typical Voltage	~3000V	~1000V
Electric field	~constant	1/r

Step 0

The simplest approach

High rate of failure

- **10** sRPCs were made by undergraduate students
- 4 of them have been tested, where:
 - 2 get spoiled at the first day (almost no response to 0.5Mbq Na22 radioactive source)
 - 2 were tested in a month time under radiation:
 - sRPC1: Na22 gamma source
 - **sRPC2**: Cosmic Rays

The chamber

Quite simple setup!!

Measurements on sealed RPC (sRPC)

- High Voltage working point evolution
- Integrated charge
 - Pulse area calculated by one Scope function
- Current
 - Read from the Imon N471a HV source output

"Prompt Charge" distribution

Current Trend

What might start to spoil the chambers in three days?

- Gas ionization
- Gas leaks
- Gas concentration gradient

Gas density (1.013 bar and 15°C)

R134A: 4.25 kg/m3
SF6: 6.27 kg/m3
Isobutane: 2.51 kg/m3

- Glue, thermoplastic or tubes out-gassing
- ???

Step 0: Summary

- First sealed RPCs build and tested in the lab by under-graduate students.
- sRPC current increase with time, different behaviour could see from the third day.
- Rise of sRPCs higher integrated charges.
- We hadn't no idea about the aging source.
- The way of acquiring data it is far too simple, an upgrade is imperative to get a deeper knowledge of the process.

Step 1

A small upgrade

Step 1

- Slightly more complicated chambers: Two tRPCs of two gaps
- HV plateaus for different gas mixtures, just to test the measurement setup:
 - R134a 100%,
 - R134a/SF6 90/10%
 - R134a/SF6/Isobutane 85/10/5%
- Three configuration used with the simplest "mixture" **R134a**:
 - **Boxed tRPC**: tRPC inside a closed metallic box
 - Gas restriction with less direct out-gassing effect, no glue around the gaps.
 - **sRPC**: tRPC sealed with glue out of the box
 - **Boxed sRPC**: sRPC inside one metallic box with gas flowing.
 - In order to disregard the leakages effects

Step 1: Setup

Step 1: Setup

Chamber configuration

Boxed tRPC

Aluminium box

Miguel Morales, Univ. Santiago de Compostela

Measurements

- Pulse amplitudes
- **Slopes**: amplitude at 90% of rise voltage / time to reach this voltage
- Prompt charges
- RPCs current
- Acquired rates:
 - tRPC rate
 - Coincidence rate: tRPC & PM1 & PM2
- Temperature monitoring

Setup Gas mixture resolution

Prompt charge disregarding large signals, or streamers

Miguel Morales, Univ. Santiago de Compostela

Boxed tRPC

Boxed tRPC: Gamma operation current

Boxed tRPC: Current

23

Boxed tRPC: Amplitude and prompt charge

Miguel Morales, Univ. Santiago de Compostela

sRPC

sRPC: Current

As expected, very strong current, temperature correlation.

Awfully, it is not easy to put apart the effect of temperature in this case!!

sRPC: Amplitudes and prompt charge evolution

Miguel Morales, Univ. Santiago de Compostela

sRPC: Current temperature correlations

Last days, higher temperatures, other effect than temperature seems to be contributing to the current.

sRPC: Slopes evolution

Events probability Events probability 0.16 0.16 0.14 0.12 Events probability 80.0 80.0 Day 5 Day 1 0.06 **0.1** 0.08 0.04 0.06 0.04 0.02 0.02 0 100 100 20 30 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 40 Slope[mV/ns] Slope[mV/ns] Events with bigger slope / Total Events 0,9 sRPC 0,8 0,7 **A2** / **A** 0,5 0,4 0,3 0 1 2 3 5 7 4 6 Time (days)

Slopes at 90% of amplitude.

Miguel Morales, Univ. Santiago de Compostela

Boxed sRPC

Boxed sRPC: Current

No important degradation in the first week from the current point of view.

Boxed sRPC: Amplitudes and prompt charge

Miguel Morales, Univ. Santiago de Compostela

Boxed sRPC: Prompt charge and Current

Even it is not clear from the total charge measures, the prompt charge is actually being affected by the increasing current flow.

Boxed sRPC slope

Miguel Morales, Univ. Santiago de Compostela

sRPC vs Boxed sRPC

Both of them are loosing "efficiency", looks like there are other effects than leaks involve.

Summary

- One gap and two gap sealed tRPCs has been build and tested by under-graduated students with a cheap electronic addon.
- Prompt charge distribution, for this setup, shows as a more reliable variable to detect earlier degradation effects.
- **Besides leaks, other effects** seems to be involved in the degradation. Maybe other components out-gassing?.
- Not scalable gluing method, in future, simplified models inside plastic boxes will be tested.
- A controlled temperature environment would help to get faster and reliable results.
- Work in progress, efficiency, time and space resolution measurements must be taken in next steps.

Thanks

- Luís Lopes, LIPC.
- Diego Gonzalez, GSI.

Thanks for your attention!!

Backup Slides

Future work

- Measure sRPC resolution and efficiency, and they evolution.
- Asses gas aging:
 - Study the different aging rates of chambers used and other ones only sealed.
 - More accurate test of materials out-gassing effects.
- Try glasses chemical etching to improve the epoxy stickiness to the glass.
- Try other building ways as keep the rpc inside a pmma enclosure.
- Use Estrela Front End Electronics and TRB acquisition system.
- Scale things up.

Boxed sRPC slope

sRPC

Eficiencia

A eficiencia xeometrica é do 0,09%, a intrínseca do 0,15%. A xeometrica sacámola de geant4 lanzando geantinos,partículas que non interaccionan con nada e simplemente che dan informacion sobre a xeometría.