Performance of the ALICE Muon Trigger system in Pb–Pb collisions

Massimiliano Marchisone, for the ALICE collaboration

Università di Torino Université Blaise Pascal de Clermont-Ferrand

XI Workshop on Resistive Plate Chambers and Related Detectors

Frascati, 06/02/2012

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions
Outline

- ALICE and the Muon Trigger
- 2 Analysis conditions
- 3 RPC efficiency
- Multiplicities
- 5 Trigger performance
- 6 Conclusions

ALICE and the Muon Trigger

∃ ▶ ∢

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions The Quark Gluon Plasma

- QGP is a non-ordinary state of matter in which quarks and gluons are deconfined
- The production of quarkonia and heavy flavours is expected to be modified by the QGP
- In a colored medium, binding forces between partons are screened by other free charges

• Ultra-relativistic heavy-ions collisions are the unique tool to produce and to study QGP in laboratory

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions

A Large Ion Collider Experiment

- ALICE is the LHC experiment dedicated to the study of heavy-ions collisions at very high energies
- It participates also to the LHC pp program
- It is composed by a central barrel, a set of forward detectors and a Muon Spectrometer

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions

The Muon Spectrometer

- The goal of the Muon Spectrometer is the detection of J/ ψ , Υ and open heavy flavours via their muonic decays
- It is composed by a front absorber, a Muon Tracking system, a magnetic dipole, a muon filter and by a Muon Trigger system
- In order to reject background from π and K decays into muons, a selection performed by the Muon Trigger and based on transverse momentum (p_T) is required

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions The Muon Trigger system

- The Trigger system is composed by four planes of 18 RPCs each (total surface of \sim 140 m²) operating in *highly saturated avalanche* mode (\rightarrow no need of amplification for electronics)
- The spatial information is used to estimate the $p_{\rm T}$ via the deviation with respect to a straight track from the I.P.

• Single and dimuon trigger signals above two cuts are delivered:

	low $p_{ m T}$ cut	high p_{T} cut
Pb-Pb 2010	0.5 GeV/c	1 GeV/c
Pb-Pb 2011	1 GeV/c	4 GeV/c

Analysis conditions

ALICE and the Muon Trigger_Analysis conditions_RPC efficiency Multiplicities_Trigger performance Conclusions Analysis conditions

- All the statistics collected by the Muon Spectrometer in Pb–Pb collisions ($\sqrt{s_{NN}} = 2.76$ TeV in 2010 and in 2011) has been analyzed
 - \mathcal{L}_{int} 2011 \sim 144 μb^{-1} (15 times more than 2010)
 - \mathcal{L}_{max} 2011 (2010) = 5 10²⁶ (2 10²⁵) Hz/cm²
 - Max collision rate 2011 \sim 4 kHz $\rightarrow \sim$ 600 Hz single muon trigger > 1 GeV/c
- Only minimum bias events have been analyzed and will be discussed in the presentation
- Muons have been required to be detected by Muon Trigger and Muon Tracking
- The analysis has been performed for different centrality bins: 0%-10% 10%-20% 20%-40% 40%-80%

RPC efficiency

Massimiliano Marchisone, 06/02/2012 RPC2012, Frascati

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions

Muon Trigger chamber efficiency

- Efficiency measured during data taking by exploiting the redundancy of the trigger system
- Efficiency for the 72 RPCs (bending and non-bending plane) from 2011 Pb-Pb data
- ullet Typical efficiency is \sim 95% or above (some chambers at 98%)

Multiplicities

Massimiliano Marchisone, 06/02/2012 RPC2012, Frascati

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions

Muon multiplicity (vs centrality)

- Average number of muons per event as a function of fill number with the lowest possible $p_{\rm T}$ cut (0.5 GeV/c)
- As expected multiplicity of muons increases with the centrality

0%-10%	10%-20%	20%-40%	40%-80%
1.8	1.2	0.6	0.1

• The stability over the time is satisfactory

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions

Strip multiplicity (vs centrality)

 Average number of hit strips per event as a function of fill number (example of the first trigger plane, bending direction)

0%-10%	10%-20%	20%-40%	40%-80%
2.9	1.9	0.9	0.2

- Soft background is **not** included: only hit strips participating in track recognized by the algorithm are taken into account
- The difference with respect to the mean number of muons per event (previous slide) is due to the cluster size

Trigger performance

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions Ratio $\frac{high p_{\rm T}}{low p_{\rm T}}$ VS $p_{\rm T}$

- *p*_T cuts are determined through simulations
- 2010: high $p_{\rm T}$ cut = 1 GeV/c 2011: high $p_{\rm T}$ cut = 4 GeV/c
- Values of $p_{\rm T}$ cuts can be checked from data by computing the ratio $\frac{high}{low} \frac{p_{\rm T}}{p_{\rm T}}$ vs $p_{\rm T}$
- There is a good agreement between p_T cuts determined from simulation and from data

Trigger selectivity

- Ratio between the number of events containing at least one • muon with $p_{\rm T} > p_{\rm T}$ cut and all the events within a given centrality range
- Horizontal error bars represent the bin width

	2010	2011	2011
	$p_{ m T}>1~{ m GeV/c}$	$p_{ m T}>1~{ m GeV/c}$	$p_{\mathrm{T}} > 4 \; \mathrm{GeV/c}$
0%-10%	61.8%	60.9%	13.6%
40%-80%	5.8%	5.9%	0.7%

• Agreement between 2010 and 2011 ratios with the same $p_{\rm T}$ cut

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions Track matching probability between Muon Trigger and Muon Tracking

- In the analysis, tracking and trigger tracks are requested to match
- Same trend and saturation value from 2010 and 2011 data
- Not all the muons detected by Muon Tracking are also detected by Muon Trigger: on top of acceptance × efficiency effects, hadrons and slow muons are stopped by the muon filter

Conclusions

Massimiliano Marchisone, 06/02/2012 RPC2012, Frascati

æ

After the analysis of the 2010 and 2011 Muon Trigger data in Pb–Pb collisions it is possible to conclude that:

- Muon Trigger system has shown a very stable behavior
- RPCs are operating with a high level of performance
- The trigger decision algorithm is efficient and selective
- $\bullet~$ The Muon Trigger allows to reject hadrons and low $p_{\rm T}$ muons which are detected by the Muon Tracking. It actually acts as a muon identifier

Also thanks to the Muon Trigger performance, the Muon Spectrometer detected more than 2500 J/ ψ in Pb–Pb 2010 and much more in 2011

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions Physics achievements with the Muon Spectrometer in Pb-Pb collisions

 $J/\psi \rightarrow \mu^+ \ \mu^-$ invariant mass fit (background subtracted) for 0%-10% most central collisions (2010 Pb-Pb data)

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions Physics achievements with the Muon Spectrometer in

Pb–Pb collisions

Inclusive J/ ψ RAA versus the centrality of the collision (2010 Pb–Pb data): RAA < 1 indicates nuclear effects which can be interpreted as a consequence of QGP formation

Backup

Massimiliano Marchisone, 06/02/2012 RPC2012, Frascati

æ

< 1 →

문▶ ★ 문▶

RPCs operating conditions

- Working condition: highly saturated avalanche
- Gas mixture: 89.7% C₂H₂F₄ 10% i-C₄H₁₀ 0.3% SF₆
- Humidity: 37%
- HV: \sim 10 kV
- Threshold: 7 mV
- Bakelite resistivity: $ho \sim 10^9 \; \Omega \cdot {
 m cm}$
- Strips width: 1, 2 or 4cm

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions RPC efficiency evaluation

- N_{tot} is a sample of particles crossing the same chamber in at least 3 planes; ε_i is the efficiency of the RPC in the *i*-th plane
- The number of reconstructed tracks firing all planes is

$$N_{4/4} = N_{tot} \prod_{1 \leqslant i \leqslant 4} \varepsilon_i$$

• The number of reconstructed tracks even if the information of the RPC in plane k is not taken into account is

$$N_{3/4}^k = N_{tot} \prod_{\substack{1 \leqslant i \leqslant 4 \ i \neq k}} \varepsilon_i$$

• And the efficiency for an RPC of plane k is

$$\varepsilon_k = \frac{N_{4/4}}{N_{3/4}^k}$$

Cluster size

æ

< ∃→

ALICE and the Muon Trigger Analysis conditions RPC efficiency Multiplicities Trigger performance Conclusions Ratio $\frac{high \ p_{\rm T}}{low \ p_{\rm T}}$ VS $p_{\rm T}$

• Simulation of
$$rac{high \ p_{\mathrm{T}}}{low \ p_{\mathrm{T}}}$$
 vs p_{T}

•
$$p_{\rm T}$$
 cut = 4 GeV/c

æ

・ロト ・部ト ・ヨト ・ヨト