

Fakultät für Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik, Abteilung Kernphysik

A 2m x 0.5m prototype of a MRPC-based neutron detector with steel converter plates

Marko Röder (TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf) for the R3B Collaboration

Frascati, 10th February 2012

R3B Experiment at FAIR

originally one option for the NeuLAND-Detector

(New Large Area Neutron Detector) to detect high-energy neutrons at the new Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt, Germany

design goals

- detect neutrons from 0.2 1 GeV
- efficiency for 400MeV neutrons: > 90%
- time resolution of σ < 100ps
- multi-neutron capability

Adopted Design for the 2m x 0.5m prototype

- 2x2 gas gap structure is sufficient to reach the goals of $\eta{>}90\%$ and $\sigma{<}100\text{ps}$
- differential and single ended readout
- inter strip spacing = 1.5 mm; strip width = 25 mm
- with 12Ω to 20Ω not matched to $50 \ \Omega$ of Front-End-preamplifiers

neutron

	Material	d [mm]
Resistive Plates	Float Glass	1.00
Dissipative Coating	Semiconductive Mylar	0.05
Electrodes	Copper	0.05
Insulator Layer	Mylar	0.1
Gas mixture	85 % Freon, 10 % SF ₆ , 5% i-Butane	0,3 (&~2.5)
Converter Plates	Stainless Steel	4 & 2
Spacer	Polyamid (Fishing lines)	0,3

Detector tests at ELBE

ELBE (Electron Linac with high Brilliance and low Emittance) at Helmholtz-Zentrum Dresden-Rossendorf

- E_e = 30 MeV
- using accelerator RF as time reference providing a σ_t =35 ps
- single electron bunches (L. Naumann et al., 2011, NIM A 635, p. 113-116)
- first performed with small size prototypes to find out best design parameters; details: D. Yakorev et al., 2011, NIM A 654, p. 79-87
- also used for a completely different detector (talk by A. Laso Garcia, Thursday)

Detector tests of small prototypes with 175 MeV neutrons at TSL in Uppsala (1)

- TSL Cyclotron accelerates protons to 179,3 (+/- 0,8) MeV
- these interact with a 7-Li target producing quasi-monochromatic neutrons of \sim 175 (+/- 2,5) MeV
- n moving onto the MRPC-Detector-Setup

Detector tests of small prototypes with 175 MeV neutrons at TSL in Uppsala (2)

preliminary neutron efficiency ~(0.77±0.33) %

Medley: Bevilacqua R. et al., 2011, NIM A 646, p. 100-107

2m x 0.5m large prototype HZDR 201b

7

Results of Tests of HZDR 201b with TacQuila

HZDR 201b, strip 4, center

Results of HZDR 201b as function of position

Monte Carlo Simulations

All simulations done in 2 steps:

- Geant4 for tracking particles in the detectors
- generate electron avalanches and signals

2 consecutive simulations with Geant4

- 1. small prototypes coded to extract calibration parameters for Geant4 by comparison with experimental data
 - space charge effect; interplay between close avalanches (merging); threshold for final readout-signal
- 2. response of full setup to neutrons
 - using hypothetic eventfiles with up to 4 neutron emission at 200, 600, 1000 MeV/nucleon asuming different relative energies between fragments
 - reconstruct relative energy spectrum using a reconstruction algorithm

Results for the full setup

- resolution $\sigma = 17$ keV (1-neutron)
- resolution $\sigma = 42 \text{ keV} (4 \text{-neutron})$
- design goal of $\eta = 90\%$ for 400 MeV neutrons can be reached with 50 layers leading to total depth of 1.2m

11

using hypothetic eventfiles ${}^{132}Sn \rightarrow (132-x)Sn + xn (x=1,2,3,4)$

Summary and Outlook

Summary:

- detection of 1GeV neutrons with MRPCs is possible
- efficiency and time resolution tests performed using minimum ionising electrons
 - $\sigma_t <$ 100 ps with η > 90% reached for 2m long counter
- simulations showed high detection efficiency of the full setup for primary neutrons and limited but good multi-neutron detection capability

Outlook:

- 1. an alternative for neutron detection with MRPCs is with glass converter plates (see talk by Jorge Machado on Wednesday)
- 2. further analysis of data with 175 MeV neutrons with small prototypes is ongoing
- 3. test of large prototype with fast neutrons at GSI in summer 2012
- 4. open for collaboration

Thank You for your attention

 supported by BMBF (06DR9058I) and GSI F&E (DR-ZUBE)

»Wissen schafft Brücken.«

Underpressure Pump to reduce the bulging of the front housing plates

usually underpressure of 40 Pa is applied (1 m² surface \rightarrow 40 N)

Electronics used during detector tests

TacQuila¹⁷ Electronics

- time resolution of 10ps sigma possible (usually 12ps to 13ps reached)
- 16 signal channels, 17th channel used as common stop signal
- includes: preamplifier, splitter, multiplexer, sum-units, TDC and QDC
- 40 MHz clock; fine measurement (within 25 ns gate relative to next clock cycle); coarse measurement counts nbr. of clock-cycles
- not multi-hit-system; event recognised by TacQuila, signals is kept until either the common stop (delayed trigger) is recognized or the reset-time has expired
- reset-time: 75 ns to 6375 ns; in 100 ns

Usual Data Acquisition System

MRPC prototypes with area of 40cm x 20cm

- first approach to build 2m x 0.5m large prototype
- built several small prototypes with variation of design parameters:
 - number of gas gaps (2x2, 2x3, 2x4)
 - glass thicknes (0.58mm, 1mm)
 - strip width (12mm, 25mm)
 - inter strip spacing (0.3mm, 0.6mm, 1mm, 1.6mm, 3mm)
 - several different Front-End-Electronics (FOPI, ALICE, PADI)
 - several different read-out schemes (signal cathodes terminated or grounded, differential readout)

for further details see: D. Yakorev et al., NIM A 654 (2011), p79-87

MRPC prototypes with area of 40cm x 20cm

Prototype	Gas	Glass	Strip	Interstrip	Readout	
	gaps	thickness	width	spacing		
HZDR-1a	2×2	0.58 mm	25 mm	3.0 mm	FOPI (signal cathodes terminated) or PADI-1/PADI-3	
HZDR-1b	2×3	1.0 mm	25 mm	3.0 mm	(8	
HZDR-2a	2×2	0.58 mm	12 mm	3.0 mm	ALICE	
HZDR-2b	2×3	0.58 mm	12 mm	3.0 mm		
HZDR-3a	2×2	0.58 mm	25 mm	3.0 mm	FOPI, with various impedance transformers (fig. 9) 1	
HZDR-3b	2×3	0.58 mm	25 mm	3.0 mm	and signal cathodes grounded	
HZDR-3c	2×3	1.0 mm	25 mm	3.0 mm		
HZDR-4	2×3	1.0 mm	25 mm	1.6 mm	FOPI (signal cathodes grounded)	
					HV electrode from acrylic paint	
GSI-1a	2×4	0.58 mm	25 mm	0.3 mm	FOPI	
GSI-1b	2×4	1.0 mm	25 mm	1.0 mm	FOPI	
GSI-2	2×4	1.0 mm	25 mm	0.6 mm	FOPI and transformers	

D. Yakorev et al., NIM A 654 (2012), p79-87

Summary of the test of small prototypes at the ELBE facility - design parameters

Table 2

Summary of the experimental results. In the first column, the design parameter(s) addressed are recalled giving their code as listed in Section 5.3. For each experiment, the efficiency η (uncertainty 1%) and the time resolution σ_t (uncertainty 7 ps) are given.

Parameter	Prototype	Front-end	Remark	η (%)	σ_t (ps)
a,d	HZDR-1b	FOPI	2×3 gaps; glass thickness 1.0 mm	97	99
a,g	NLDK-1d	FOFI	z × z gaps	98	90
c,e	HZDR-4	FOPI	2×3 gaps; interstrip spacing 1.6 mm; HV electrode from acrylic paint	95	106
a,c	GSI-1a	FOPI	2×4 gaps; interstrip spacing 0.3 mm	98	95
с	GSI-2	FOPI	2×4 gaps; interstrip spacing 0.6 mm	97	115
С	GSI-1b	FOPI	2×4 gaps; interstrip spacing 1.0 mm	97	127
f	HZDR-3a	FOPI	2×2 gaps; no impedance transformer	97	80
f	HZDR-3a	FOPI	2×2 gaps; imped.transf with $C_x = 4.7$ pF; glass thickness 0.58 mm	98	94
f	HZDR-3a	FOPI	2×2 gaps; imped.transf with $C_x = 2.7 \text{ pF}$; glass thickness 0.58 mm	98	89
f	HZDR-3b	FOPI	2×3 gaps; imped.transf with $C_x = 4.7$ pF; glass thickness 0.58 mm	98	84
f	HZDR-3b	FOPI	2×3 gaps; imped.transf with $C_x = 2.7$ pF; glass thickness 0.58 mm	99	82
f	HZDR-3b	FOPI	2×3 gaps; imped.transf with $C_x = 2.2$ pF; glass thickness 0.58 mm	99	75
d,f	HZDR-3b	FOPI	2×3 gaps; imped.transf with $C_x = 0$ pF; glass thickness 0.58 mm	99	88
f	HZDR-3c	FOPI	2×3 gaps; imped.transf. with $C_x = 3.3$ pF; glass thickness 1.0 mm	97	114
g	HZDR-1a	FOPI	Positive HV, only Cathode 1 connected	66	88
g	HZDR-1a	FOPI	Positive HV, only Cathode 2 connected	69	91
g	HZDR-1a	PADI-1	Only anode connected	90	80
g	HZDR-1a	PADI-1	Anode and both cathodes connected	97	111
g	HZDR-1a	PADI-1	Only one of two cathodes connected	54	113
g	HZDR-1b	PADI-3	Low threshold	98	83
g	HZDR-1b	PADI-3	High threshold	91	87
b,g	HZDR-2a	ALICE	2×2 gaps; strip width 12 mm	89	113
b,g	HZDR-2b	ALICE	2×3 gaps; strip width 12 mm	96	

D. Yakorev et al., NIM A 654 (2012), p79-87

R3B @ FAIR

- all elements, H to U
- intensity >1012 ions/s
- high energy, 1.5 GeV/u
- pulsed and CW beams

Kinematically complete measurements of Reactions with Relativistic Radioactive beams

- Knockout reactions
- Electromagnetic excitation
- Charge-exchange reactions

Simulations

2 consecutive simulations with Geant4

- 1. small prototypes coded to extract calibration parameters for Geant4 by comparison with experimental data
 - space charge effect; interplay between close avalanches (merging); thresold for final read-out-signal
- 2. big prototype coded with data from calibration simulations
 - random/white noise included
 - using $\sigma_t = 150 \text{ ps}$ (worst case scenario)
 - using hypothetic eventfiles
 - ${}^{132}Sn \rightarrow (132-x)Sn + xn (x=1,2,3,4) at 200, 600, 1000 MeV/nucleon$
 - distance to target: 12.5 m
 - efficiency of 90% for 400 MeV neutrons leading to 50 layers with a total depth of 1.2 m

All simulations done in 2 steps:

- Monte Carlo engine providing primary particles and their properties
- electrons grow to electron avalanche governed by Townsend and attachment coefficients (resp. for multiplication and recombinatin effects)

Multi-neutron Reconstruction Algorithm

Multi neutron reconstruction algorithm

- clusterization (hits within a certain distance are grouped together)
- if speed between two clusters in one event is smaller than the beam velocity it is excluded
- number of surviving hits gives number of incoming neutrons

using hypothetic eventfiles ${}^{132}Sn \rightarrow (132-x)Sn + xn (x=1,2,3,4)$

Multi-neutron Reconstruction Algorithm

Multi neutron reconstruction algorithm

- sort hits according to latend velocity (travel time from source to hit position)
- **clusterization** (hits within a certain distance are grouped together; this certain distance was optimized for each beam energy and source-to-target-distance)
- each group characterized by its fastest member
- single-member clusters are allowed
- after that, speed between remaining hits were calculated
- if speed between two hits in one event is smaller than the beam velocity it is excluded
- number of surviving hits gives number of incoming neutrons

Simulations and Full Size Detector

- 1. efficiency curve well understood by Geant4 simulations including avalanche formation
- 2. these serve as basis for a neutron efficiency of $\sim 2\%$ for each layer
- 3. 50 layers (~1.2m thickness, 4t mass, 8 k output channels) are needed for a total neutron efficiency of >90% (for 400 MeV neutrons)

HZDR 201b

top (HV side)

- taken from:
- /net/files/share/fwk/fwkk/NeuLAND/data/Exp_100711/Beam_100711.ppt

- Nomenklatur: [Detektor_Streifen_Elektrode(A=Anode, C=Kathode)], Konfiguration, Impedanz
- •
- HZDR201b_S10_A, diff, 16,5 Ohm
- HZDR201b_S10_K, diff, 9,8 Ohm
- •
- HZDR201b_S15_A, SE, 11,4 Ohm
- •
- HZDR201b_S18_A, SE, 12,4 Ohm
- •
- HZDR202_S05_A, SE, 13,6 Ohm
- •
- HZDR202_S10_A, diff, 18,1 Ohm
- HZDR202_S10_K, diff, 9,7 Ohm
- •
- HZDR202_S15_A, SE Trafo 0pF, 63,8 Ohm
- •
- HZDR202_S18_A, SE Trafo 1pF, 64,8 Ohm
- ٠
- Den Fehler der Messung müsste man mal nachrechnen, ca. 3-5%