

The ISOL@MYRRHA project at SCK•CEN

Lucia Popescu SCK•CEN Ipopescu@sckcen.be

EURORIB, Abano Terme, 20-25 May 2012

- The MYRRHA project at SCK•CEN
- ISOL@MYRRHA conceptual design
- Facility characteristics
- Applications
- ISOL@MYRRHA Project

MYRRHA - Concept

- Subcritical reactor
 - > High power density 30-32% MOX core
 - Liquid metal cooled (LBE)
 - High flexibility

MYRRHA - Concept

- on the ESFRI roadmap (Nov. 2010)
- on the ESNII roadmap (Nov. 2010)
- on the **NuPECC** roadmap (Dec. 2010) for the physics applications (ISOL@MYRRHA)

ISOL@MYRRHA - Concept

MYRRHA Proton Driver

Protons: 2-4 mA, CW

Collaborative efforts within MAX FP7 project: CNRS, ACS, ADEX, CEA, EA, FE-UCP, IAP, INFN, KUL, SCK•CEN, TED

2 gap Spoke 5 cell Elliptical 352 MHz 704 MHz double-injector β**=0**.47 β**=0.35** β**=0.65** 17 MeV 100 MeV 200 MeV 600 MeV **Accelerator characteristics:**

Fundamental parameters (ADS)		implementation	
Particle	р	Superconducting linac	
Beam energy	600 MeV	frequency	176/352/704 MHz
Beam current	4 mA	Reliability = redundancy	Double injector
Mode beam trip 7 30	CW		"fault tolerant"
MTBF Failure De	> 250 h		scheme L. Popescu, EURORIB 2012

MYRRHA Proton Driver

- implementation of reliability: 3 principles
 - overrating _____ parallel scheme (double-injector)
 - 2. redundancy *serial scheme* (modular high energy sections)
 - 3. reparability (MTR<<MTBF)
- principles to be applied to the basic linac layout, but also to much of the ancillary equipment

Principle of fault tolerance in the superconducting spoke linac

Change RF phase in neighboring cavities
 Increase RF field in neighboring cavities

Increase of 25% field level -> 50% power margin required

Beam-Splitting System (Concept)

Proton-beam duty cycle

Beam-Splitting System (Concept)

Time structure of (a) the beamkicker voltage after the acceleration section (600 MeV)

Deflection-plate voltage in front of the RFQ entrance (30 keV)

Beam-Splitting System (Concept)

ISOL@MYRRHA Facility Characteristics

based on proven technology (largely based on experience at ISOLDE and TRIUMF)

keep open the possibilities for beams of higher intensity & energy

can deliver:

- \blacktriangleright pure RIB: selective ionization, chemistry, M/DM > 10.000
- intense RIB (x100 compared to the present ISOLDE 'standard' RIB)
- RIB of good ion optical quality
- optimal experimental conditions/lay-out/support (green-field facility!)
- extended beam times with stable operation

- experiments
 need very high statistics;
 need many time-consuming systematic measurements;
 hunt for very rare events;
 have an inherent limited detection efficiency.
- complementary to ISOL and In-Flight facilities

ISOL@MYRRHA Applications

- Fundamental Interactions
 - > **Correlations** (β - ν , ...), **EDM**: Statistics + control systematic effects of setup
- Nuclear Physics
 - > Rare decays: **GTGR**, $\beta_{xn/yp}$, cluster decay
 - Extreme precision: e.g., crystal spectrometry
- Atomic physics
 - QED tests in HCI
 - Bohr-Weisskopf: A- and g-factors
- Condensed Matter
 - > Mössbauer, β-NMR, PAC, EC-SLI: Systematic sample measurements
- Biology
 - > Mn, Fe, Ni, Cu, Zn β -NMR in proteins: Systematic sample measurements
- Medical Applications
 - Radiopharmacy

ISOL@MYRRHA - an integral part of the MYRRHA project

Delivery of the proton beam by MYRRHA but

> To be developed within a separate consortium

Physics experiments (from the focal plane of the separator)

- > To be set up and run by users
- Support by ISOL@MYRRHA physics group at SCK•CEN
- Conceptual design phase (2012-2014) followed by a basic design in the FEED-phase (2015-2017)
- R&D on target-ion-source systems and parasitic operation with MYRRHA

Project Schedule

2012-2014	Conceptual Design
2015-2017	Front End Engineering Design
2018	Awarding construction contracts
2019-2021	Manufacturing of components & construction
2022	Assembly & Installation
2023-2024	Commissioning
2025 -	Exploitation

Conceptual Design (2012-2014)

Ongoing ISOL@MYRRHA Activities

- Task1: Beam splitter
- Task2: Target Ion Source
- Task3: Beam preparation: RFQ Cooler & Buncher + Mass Separators
- Task4: Safety & Radioprotection
- Task5: Overall conceptual design

Topical workshops :

- Fundamental interactions (10/2011)
- Detailed decay spectroscopy (04/2012)
- ➢ RIB production
- Medical applications
- Laser spectroscopy and atomic physics
- Solid state and biology

• Aim:

- Investigate scientific cases in more detail
- Identify unique opportunities
- Collect information on instrumentation
- Gather input for design study
- Set up a Users Group

Searching for national and international support

http://isolmyrrha.sckcen.be

Copyright notice

Copyright © 2011 - SCK•CEN

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire

Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL Operational Office: Boeretang 200 – BE-2400 MOL