Radioisotopes for Nuclear Medicine

Ulli Köster

Institut Laue Langevin, Grenoble

Radioisotopes for diagnosis

"I'd have been here sooner if it hadn't been for early detection."

Mammary Carcinoma Survival time since diagnosis of metastases

Prof. Molls

Comparison of Therapies

(Molls, TU München; according to Tannock: Lancet 1998, Nature 2006)

ΠП

Immunology approach

Multidisciplinary collaboration to fight cancer

Structural Formula of DOTA-TOC/TATE

Male 36 years of age

Small cell pancreatic neuroendocrine tumour Liver metastases Ki-67 index 10-15% (liver biopsy)

4 cycles with ¹⁷⁷Luoctreotate and capecitabine

Partial remission

Roelf Valkema, EANM-2008.

What success does PRRT offer?

✓ CR+ PR + MR in about 50% of patients: YES

Reduce symptoms and improve quality of life: YES

✓ Increase survival time: YES

Safety and tolerability:

Erasmus MC

YES

Roelf Valkema, EANM-2008.

Lymphoma therapy: RITUXIMAB+¹⁷⁷Lu

E.B., 1941 (m): UPN 6

15.9.2009

University Hospital Basel, CH

1.9.2002

Radioimmunotherapy

Radioimmunotherapy

The chart of nuclides – nuclear medicine perspective

364 keV gamma ray emitted with 82% B.R.

3.7 GBq patient dose \Rightarrow 0.2 mSv/h at 1 m

requires dedicated shielded treatment rooms

Radionuclides for RIT and PRRT

Radio- nuclide	Half- life (d)	E mean (keV)	Εγ (B.R.) (keV)	Range			
Y-90	2.7	934 β	-	12 mm	Established		
I-131	8.0	182 β	364 (82%)	3 mm	isotopes		
Lu-177	6.7	134 β	208 (10%) 113 (6%)	2 mm	Emerging isotope		

Production of 177Lu

Waste problem for hospitals!

R. Henkelmann et al., Eur. J. Nucl. Med. Mol. Imag. 36 (2009) S260.

The curse of the K-isomer !

"So it'll pollute the lake. It will also make the fish glow in the dark when we go night-fishing !"

Alternative production route to ¹⁷⁷Lu

The rising star for therapy

Radionuclides for RIT and PRRT

Radio- nuclide	Half- life	E mean (keV)	Εγ (B.R.) (keV)	Range	cross-	fire
Y-90	64 h	934 β	-	12 mm		Estab- lished
I-131	8 days	182 β	364 (82%)	3 mm		isotopes
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm		Emerging isotopes
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm		PSD
Tb-149	4.1 h	3967 α	165,	25 µm		isotopes:
Ge-71	11 days	8 e-	-	1.7 µm		supply-
Er-165	10.3 h	5.3 e ⁻	-	0.6 µm	V	iiiiiteu:

localized

Modern, better targeted bioconjugates require shorter-range radiation \Rightarrow need for adequate (R&D) radioisotope supply.

Terbium: a unique element for nuclear medicine

Dy 150 7.2 m	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6.29 h	Dy 154 3.0 - 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475
n 4.23 Y 387	7 389; 49; 540; 176 g; m	n 3.63 7257 9	a 3.46. 7.81, 214; 100: 254	a 2.87	s p* 0.9; 1.1 y 227	ir 33 9a. u ≤0.009	- 7 320	ar33 ₩0. a ≤0.005	* 9 58; e d 8000	ir 60 ₩6.1x <0.0003	ir 600 ⊮a.α ≪1E-8	u 170
Tb 149	Tb 150	Tb 151 25 s 17.6 h	Tb 152	Tb 153 2.34 d	Tb 154	Tb 155 5.32 d	Tb 156	Tb 157 99 a	Tb 158	Tb 159 100	Tb 160 72.3 d	Tb 161 6.90 d
1706 1202 1706 1202 1005 100	1 630; 5.7., 810; 8.3.48 827; 1 638; 438; 498;	13	A CONTRACTOR OF STATE	5* 212, 170; 110; 102; 83	1-198 1-198 1-198 1-198	* γ 87; 106; 160; 262	γ00 μ ^{*-} 104 μ ^{*-} 108 μ ^{*-} 1280	γ <u>(</u> 54)	h:(110) 1944, 1971 1982, 10	ır232	966. 966. 9670	6 ⁺⁺ 0.5; 0.6 7 26; 40; 75 e ⁺⁻
Gd 148 74.6 a	Gd 149 9.28 d	Gd 150 1.8 · 10 ⁴ a	Gd 151 120 d	Gd 152 0.20	Gd 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86
e 3.185 e 14000	4; a 3.016 y 150; 299; 347	a 2.72	e; n 2.60 7 154; 243; 175	9.2.14; o 700 Pe. o <0.007	v 97; 103; 70 r 20000 rh, o 0.93	n 60	# 61000 #8:-0 0.00008	<i>σ</i> −2.0	ar 254000 rda, er < 0.05	0.2.3	0 [−] 1.0 y 384; 58	al.5

Production of non-carrier-added ¹⁶¹Tb

Irradiation in high flux reactor, then chemical separation S. Lehenberger et al., Nucl. Med. Biol. 38 (2011) 917.

Production of ¹⁴⁹Tb, ¹⁵²Tb and ¹⁵⁵Tb at **ISOLDE** target - ion source proton beam (1.4 GeV) analysing magnet radioactive ion beams mass number 148 151 149 150 152 20 30

G.J. Beyer et al., Eur. J. Nucl. Med. Molec. Imaging **31** (2004) 547.

Targeted Alpha Radionuclide Therapy KB Tumor-Bearing Mice Treated with ¹⁴⁹Tb-Folate

C. Müller et al., subm. to J. Nucl. Med.

Imaging Studies Using PET and SPECT KB Tumor-Bearing Nude Mice

¹⁵²Tb-folate: 9 MBqScan Start: 24 h p.i.Scan Time: 4 h

¹⁵⁵Tb-folate: 4 MBqScan Start: 24 h p.i.Scan Time: 1 h

¹⁶¹Tb-folate: 30 MBqScan Start: 24 h p.i.Scan Time: 20 min

C. Müller et al., subm. to J. Nucl. Med.

Production of ^{149g}Tb

- spallation of Ta (or Hg) target coupled to ISOL (possibly off-line) (HIE-)Isolde, ISAC, LAMPF, SNS, J-PARC, ESS, ISOL@MYRRHA,... needs ≈GeV protons + mass separation
- ¹⁵²Gd(p,4n) with 55 MeV protons + chemical separation Arronax, PSI, KVI, JYFL, LLN, SPES,... needs grams of enriched ¹⁵²Gd, unknown C.S. & purity
- ¹⁵²Gd(^{3/4}He,6/7n)¹⁴⁹Dy with 120 MeV ⁴He (or 100 MeV ³He) + chem. sep.
 KVI, LLN, Karlsruhe,...
 needs grams of enriched ¹⁵²Gd, unknown C.S. & purity
- 4. ¹⁴⁴Sm(⁹Be,4n)¹⁴⁹Dy with 65 MeV ⁹Be + chem. sep. needs intense ⁹Be beam, unknown C.S. & purity
- ¹⁴²Nd(¹²C,5n) with 120 MeV ¹²C + chem. sep.
 SPIRAL2, CSS1, KVI, JYFL,...

needs target design for high current, optimization of yield vs. purity

Radionuclides for RIT and PRRT

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range	cross-fire
Y-90	64 h	934 β	-	12 mm	Estab-
I-131	8 days	182 β	364 (82%)	3 mm	isotopes
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm	Emerging isotopes
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm	P&D
Tb-149	4.1 h	3967 α	165,	25 µm	isotopes:
Ge-71	11 days	8 e ⁻	-	1.7 µm	supply-
Er-165	10.3 h	5.3 e ⁻	-	0.6 µm	

localized

Modern, better targeted bioconjugates require shorter-range radiation \Rightarrow need for adequate (R&D) radioisotope supply.

LET of Auger electrons

A.I. Kassis, Rad. Prot. Dosimetry 143 (2011) 241.

Radiobiology of Auger electron emitters ?

M. Jensen et al., DTU Risø

Outlook

The ideal agent for cancer therapy would consist of heavy elements capable of emitting radiations of molecular dimensions, which could be administered to the organism and selectively fixed in the protoplasm of cells one seeks to destroy. While this is perhaps not impossible to achieve, the attempts so far have been unsuccessful.

> C. Regaud, A. Lacassagne, Radiophysiologie et Radiotherapie 1 (1927) 95. Translation : A.I. Kassis, Int. J. Radiat. Biol. 80 (2004) 789.

Today we are closer than ever to reach this goal !

What can nuclear physics facilities do ?

- 1. provide now R&D isotopes for preclinical studies
- 2. facilitate facility access for remote "mail-out-users" from biochemical/medical research groups
- 3. clever design of beam dumps, collimators, etc. enabling isotope harvesting
- 4. get more radiochemists involved