

EURORIB'2012, Abano Terme, May 20-25, 2012

#### **Proton knockout:**



A.A. Korsheninnikov et al., Phys. Lett. B 326 (1994) 31



#### Double charge exchange:









# <sup>10</sup>He in 2n-transfer reaction <sup>3</sup>H(<sup>8</sup>He,p)<sup>10</sup>He





## <sup>10</sup>He spectrum: p-<sup>8</sup>He coincidences





Pronounced angular distribution can be observed in the case of **direct reactions**. The state of interest should be populated and decay by zero spin particles. Correlations in such case are observed relative to the direction of momentum transfer.

### Angular and energy correlations



#### **Results:**





Three-body <sup>8</sup>He+n+n calculations: L.V. Grigorenko and M.V. Zhukov, Phys. Rev. C 77 (2008)

M.S. Golovkov et al., Phys. Rev. C 76 (2007)

 $W = [AP_0(x) + B(3^{1/2})P_1(x) + C(5^{1/2})P_2(x)]^2 + D^2$ P<sub>1</sub>(x) – Legendre polinomial, x = cos( $\theta_{8He}$ ) A, B and C - amplitudes of coherent s-, p- and d-contributions,

D – decoherent "background"

### **Breakdown of the N=8 shell**



The anomalous level ordering indicates that the breakdown of the N=8 shell known in <sup>12</sup>Be thus extends also to the <sup>10</sup>He system.



- Missing mass spectrum of <sup>10</sup>He was measured in the two-neutron transfer reaction <sup>3</sup>H(<sup>8</sup>He,p)<sup>10</sup>He.
- Angular distribution of <sup>8</sup>He in <sup>10</sup>He c.m. measured with respect to the transferred momentum vector shows pronounced interference patterns allowing to identify spin-parity of states contributing to the spectrum:

 $0 < E_T < 3.5 \text{ MeV}$ : Angular distribution of <sup>8</sup>He is uniform, energy distribution is typical for a  $0^+$  state. In the missing mass spectrum the <sup>10</sup>He g.s manifests itself as a broad peak with a maximum at about **2 MeV**;

**4.5**< $E_T$ <6 MeV: Angular distribution of <sup>8</sup>He shows a dominance of a p-wave ( $l_y=1$ ), while the energy distribution gives the evidence of FSI in the n-n channel ( $l_x=0$ , S=0). Thus, the spin-parity of the **first** excited state of <sup>10</sup>He is **1**<sup>-</sup>;

**E<sub>T</sub>>6 MeV**: Analysis of the angular distribution of <sup>8</sup>He above 6 MeV allowed to interpret the <sup>10</sup>He spectrum above 6 MeV as a superposition of the 0<sup>+</sup>, 1<sup>-</sup> and 2<sup>+</sup> states.

• The established level sequence shows that <sup>10</sup>He is one more dripline nucleus demonstrating the shell structure breakdown.



# <sup>8</sup>He in 2n-transfer reaction <sup>3</sup>H(<sup>6</sup>He,p)<sup>8</sup>He



# <sup>10</sup>He











**<sup>8</sup>He-n:** <u>s-wave</u> a=+2.9 fm V=0 MeV <u>p-wave</u> V=-4.5 MeV

| E <sub>R</sub> (MeV)<br>or a <sub>s</sub> (fm) | Jπ   |
|------------------------------------------------|------|
| >-20 fm                                        | 1/2+ |
| 2 MeV                                          | 1/2- |
| 4.5 MeV                                        | 5/2+ |



#### **9He:** Experimental status

 ${}^{9}\text{Be}(\pi^{+},\pi^{-}){}^{9}\text{He}$ 



K.Seth, et al., *Exotic Nucleus Helium-9* and Its Excited States Phys.Rev.Lett. **58** (1987) 1930-1933



<sup>9</sup>Be(<sup>14</sup>C,<sup>14</sup>O)<sup>9</sup>He



H.G.Bohlen et al., *Nuclear structure studiesof bound and unbound states in drip-line nuclei* Nuovo Cim. **A 111** (1998) 841-846



## 9He

# Conclusions

- Missing mass spectrum of 9He:
  - Broad states are seen at ~2 MeV and at ~4.5 MeV;
  - Threshold behaviour gives evidence for s-wave contribution;
  - ➢ Scattering length limit a > −20 fm is imposed.
- Angular distribution of <sup>8</sup>He in the <sup>9</sup>He c.m. system makes possible complete spin-parity identification.



