Laser Spectroscopy with the Leuven gas-cell-based Laser Ion Source

R. Ferrer, L. Ghys, M. Huyse, Yu. Kudryavtsev, D. Pauwels, D. Radulov, L. Rens, P. Van den Bergh, C. Van Beveren, and P. Van Duppen

Instituut voor Kern- en Stralingsfysika, KU Leuven (Belgium)

OUTLINE

- Motivation
- Production of exotic beams by RILIS
- In-Gas-Cell Laser Spectroscopy @ LISOL
- Progress on the way to implement In-Gas-Jet Laser Spectroscopy

MOTIVATION

Strategic areas of chart of nuclides \rightarrow understand nuclear structure effects

- N \approx Z nuclei Study role of proton-neutron correlations -
- Proton drip line rp process, nuclei far off stability -
- Proximity doubly magic N = Z = 50 strong shell correction effects -
- SHE understanding of SHE and those at the limit of nuclear existence -

Gas cell-based resonance ionization laser spectroscopy of :

D ⁹⁴Ag High-spin isomerism, β -delayed p, 1- and 2-p emission

Image: 107-101Sn
Test validity of shell-model predictions

□ VHE (Z ~ 89 - 102)

Validate nuclear and atomic theory

Resonance Ionization Laser Ion Source: RILIS

• SELECTIVE (element and isomer) & EFFICIENT PRODUCTION OF RARE ISOTOPE BEAMS

U. Koester et al., Nucl. Phys. A 701 (2002) 441c

• IN-SOURCE ATOMIC SPECTROSCOPY

G. D. Alkhazov et al., NIM B69 (1992) 517

Hot Cavity

- No refractory elements
- $T_{1/2}$ element dependent
- Sensitivity 1 ion/s (182Pb)
- Resol~ 4 GHz (⁵⁹Cu) (Doppler)
- Produced Ion beams ~30 elements

V.N. Fedoseev et al., NIM B266 (2008) 4378

Gas Cell

- "All" elements available
- $T_{1/2}$ cell evacuation time
- Sensitivity < 1 ion/s (97 Ag)
- Resol. ~ 3 GHz (⁵⁹Cu) (Pressure)
- Produced Ion beams ~15 elements

Yu. Kudryavtsev *et al.*, NIM B267 (2009) 2908

T. E. Cocolios et al., PRL 103, 102501 (2009)

Dual Chamber Gas Cell

In-Gas-Cell Laser Spectroscopy of Ag

	Splitting	I^{π}	$\mu_{exp}(st+sys)$	μ_{exp}^{lit}
	(GHz)		(nm)	(nm)
102	29.5(1.7)	5+	3.5(2)	4.6(7)
100	36.2(2)	6+	4.42(2)	
98	38.3(6)	5+	4.60(7)	
	38.3(6)	6+	4.67(7)	
101	46.8(2)	9/2+	5.57(2)	5.7(4)
99	48.7(3)	9/2+	5.80(3)	
97	50.6(9)	9/2+	6.0(1)	
	50.6(9)	7/2+	5.9(1)	

U. Dinger et al., Nucl. Phys. A 503 (1989) 331

D. Vandeplassche et al., Hyperfine Interact. 22 (1985) 483

lain Darby Phys. Lett. B (in preparation)

Broadband Spectroscopy on Ac

In-Gas-Jet Laser Spectroscopy

• Increase Resolution and Selectivity

- Ionization in cold jet expanding out of the gas cell

Demonstrated proof of principle @ LISOL

T. Sonoda *et al.* NIM B267 (2009) 2918

Transmission through RFQ Ion Guides

<u>Comparison experiment vs. simulation</u> (bkg p = 1e-3 mbar)

- Performance of ion guides found to be in agreement with expectation

-Transmission efficiency $\epsilon = 80\%$

-Similar transmission found for bkg p=0.1 mbar

Selection of Ions from the Gas Jet

• Time profiles with lasers in counterpropagating direction

A/Q= 63 DC2= 10 V

- Determination of blocking potential DC1

• Bias voltage of 40 V is sufficient to block all ions from the gas cell

Effect of dc gradient on the Ion Beam

- Time profiles with lasers in counterpropagating direction

Reduction of the Laser Bandwidth

• Study of typical LISOL narrow-band pulse using FP interferometer

- Radial profile of interference ring shows four oscillation modes
- Separation between modes is 400 MHz
 → mode FWHM= 150MHz
 Laser bandwidth ~1.4 GHz (SHG)

• Amplification of CW Single Mode Diode Laser in Pulsed Dye Amplifier

• 90 MHz Fourier-limited (5ns) laser bandwidth affected by residual Doppler broadening \rightarrow final linewidth of 150 MHz

In-gas-jet laser spectroscopy will allow high-sensitivity and high resolution experiments with a Leuven-type laser ion source

Acknowledgments

LISOL team:

R.F, L. Ghys, M. Huyse, Yu. Kudryavtsev, D. Pauwels, D. Radulov, L. Rens, P. Van den Bergh, C. Van Beveren, and P. Van Duppen

LISOL Alumni: T. Cocolios, I.G. Darby, T. Sonoda

Collaborators:

University of Mainz

A. Hakimi, T. Kron, S. Raeder, S. Richter, J. Rossnagel, K. Wendt

GANIL-SPIRAL2- IPN Orsay

B. Bastin, S. Franchoo, N. Lecesne, F. Lutton, B. Osmond, H. Savajols , J. C. Thomas

JYFL University of Jyväskylä

I. Moore, M. Reponen, V. Sonnenschein

JINR-Dubna S. Zemlyanoy

Transmission through RFQ Ion Guides

- Performance of ion guides found to be in agreement with expectations - Transmission efficiency $\varepsilon = 80\%$ (bkg p = 1e-3 mbar)

Transmission through Mass Separator

Transmission ⁶³Cu (bkg pressure 0.1 mbar)

After increasing dragging field through ion guides we get the same transmission as for lower pressure (p=1e-3 mbar)

Selection of Ions from the Gas Jet

- Bias voltage of 40 V is sufficient to block all ions from gas cell

