Hindered proton collectivity in the proton-rich nucleus 28 S: Possible new magic number Z=16

> Yasuhiro Togano ExtreMe Matter Institute EMMI, GSI

Magic numbers at neutron-rich nuclei

• Disappearance of *N*=8, 20...

– Vicinity of neutron drip line

• New magic number *N*=16

– Around ²⁴O

Magic numbers at proton-rich nuclei

• Disappearance of Z=8 Ar -2+ state energy in ¹²O S • D. Suzuki et al., PRL 103, 152503 D Si • Z=16: Analogous to N=16AI Mg – Not yet confirmed. Na Ne

Sc

Magic numbers at proton-rich nuclei

RIKEN Nishina Center

- Primary beam: 115 MeV/u ³⁶Ar
- $\text{AVF-RRC} \rightarrow \text{RIPS}$ RIPS AVF RRC

RIPS + RF deflector

Primary Beam

- Primary beam: 115 MeV/u ³⁶Ar
- Target: 531 mg/cm² Be
- Degrader at F1: 221 mg/cm² Al
- RF-deflector
 - To purify the beam
 - K. Yamada et al., Nucl. Phys. A 746, 156c

Experimental Setup

Gamma-ray energy spectrum

- Ex=1.497(11) MeV
 - Consistent with previous result: 1.512(8) MeV
 - 2 neutron-knockout from ³⁰S (K. Yoneda et al. PRC 74, 021303)

Angular distribution of ²⁸S*

- Angle integrated cross section: 99(16) mb.
- DWBA analysis

B(E2) values and $Ex(2_1^+)$

Double ratio $|M_n/M_p|/(N/Z)$

- $M_{n(p)}$: neutron (proton) transition matrix amplitude
- $|\mathbf{M}_n/\mathbf{M}_p|/(N/Z)$
 - Relative contribution of p/n to a transition
 - -> 1.0: Neutron dominance \leftarrow Singly *p* magic nuclei
 - cf. ^{18,20}O, Sn isotopes (A. M. Bernstein, PLB 103, 255)
- $|\mathbf{M}_p| = \operatorname{sqrt}(B(E2)/e)$
- $|M_n|: M_p$ of the mirror partner $\leftarrow B(E2)$ of ²⁸Mg $|M_n/M_p|/(N/Z) = 1.9(2)$ ²⁸S: Singly *p* magic nucleus $\leftarrow Z=16$

Double ratio $|M_n/M_p|/(N/Z)$

Summary

• $B(E2;0^+_{gs}\rightarrow 2^+_1)$ of ²⁸S was obtained experimentally to be 181(31) e^2 fm⁴ using Coulomb excitation at 53 MeV/nucleon.

- Smaller B(E2) than neighboring isotopes/isotones.

Sc

20

20 Ca

80

- $|M_n/M_p|/(N/Z)$ was obtained to be 1.9(2). - Neutron dominant excitation.
 - Emergence of new magic number Z=16. s

Collaborators

RIKEN Nishina Center

K. Yamada, T. Motobayashi, N. Aoi, H. Baba, S. Bishop, P. Doornenbal, T. Furukawa, S. Kanno, Y. Kondo, M. Kurokawa, Y. Matsuo, H. Murakami, S. Takeuchi, K. YonedaRikkyo University

Y. Yamada, K. Ieki, K. Kurita, M. Matsushita, K. Okada, R. Shioda Tohoku University

N. Iwasa, N. Kume,

Tokyo Institute of Technology

N. Kobayashi, T. Nakamura, Y. Satou, K. N. Tanaka Center for Nuclear Study, University of Tokyo

T. Kawabata, S. Ota, S. Shimoura,

Saitama University

T. Kuboki

Shanghai Institute of Applied Physics

D. Fang, Y. G. Ma, W. Tian, H. Wang, J. Wang, X. Cai