Precise determination of the ionization potential of astatine by in-source laser spectroscopy

S. Rothe for the Astatine collaboration

eurorib12

Rarest element on earth: Astatine

Most abundant isotope 218 At, (t_{1/2} = 1.5 s)

I.Asimov: 1st mile of earth's crust : 70mg (~3.5 atoms/ kg) Artificial production:²⁰⁹Bi(q.2n)²¹⁰At. Corson et al. (1940)

First optical spectroscopy of ²¹⁰At, 70 ng sample, (2x10¹⁴ atoms), McLaughlin (1964) Ionization potential (IP) unknown – last in the list of naturally occurring elements RILIS

ASTATINE 70mg

1 x per Planet 218

The RILIS laser setup

The "Windmill" α -detector

A. Andreyev et al., Phys. Rev. Lett. 105, 1 (2010). eurorib 12 Ionization potential of astatine

ion beam implanted into C foil for ~1 min.

- Radioactive isotopes decay
- Characteristic energy spectrum is recorded
- Integral of α -line gives count rate
- Very sensitive: Rates from 0.1 to 1000 s⁻¹

Sample α -decay spectrum.

Verification of known transitions

	IP ~75000 cm ⁻¹
E	
273 r	
	46234 cm ⁻¹
	44549 cm ⁻¹
4 nn	
22	N
	<u> </u>
ro rib :	12 Ionizati

•

•

RILIS

Ionizing threshold of astatine

- Laser scan of second laser
- Low resolution
- Required ~6 h data taking

	312 – 335 nm	<u>IP 75129 cm⁻¹</u>
	+	46234 cm ⁻¹
24 nm 16 nm		
uro rib 1	2	<u>0 cm⁻¹</u> Ioniza

IP_{threshold}(At) = 75129(95) cm⁻¹

- Higher resolution needed
- low yield due to low laser power in final step
- 3-color scheme allows use of 532 nm (50W)

Ionization potential of astatine

Towards an efficient ionization scheme

Spectroscopy at ISAC/TRIUMF (¹⁹⁹At) cw proton beam from cyclotron 200 nm scan: 3 new transitions Verified at ISOLDE/CERN (²⁰⁵At)

Ionization potential of astatine

Spectroscopy of Rydberg levels

IP_{Threshold} allowed choice of laser dye High resolution laser scan across the IP ²⁰⁵At measured on Faraday cup >30 Rydberg levels found

Summary

10

Proposal IS534 Beta-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams - A. Andreev et al. -

Acknowledgements

RILIS - Team

CERN, EN-STI

Larissa

University of Mainz, Working group LARISSA Mainz, Germany

ROYAL INSTITUTE OF TECHNOLOGY

Bundesministerium für Bildung und Forschung

Wolfgang Gentner Stipendien

KTH – Royal Institute of Technology & Knuth and Alice Wallenberg Foundation Stockholm, Sweden

The Wolfgang-Gentner-Programme of the Bundesministerium für Bildung und Forschung (BMBF)

eurorib 12

Ionization potential of astatine

RILIS

