

Uranium Carbide Target Material Investigations at ISOLDE/CERN

<u>A. Gottberg^{1,2,3}</u>, T. Stora¹⁾, J.P. Ramos¹⁾, C. Degueldre⁴⁾, C. Borca⁴⁾, D. Grolimund⁴⁾, I. Günther-Leopold⁴⁾, C. Lau⁵⁾, P. Delahaye⁶⁾, A. Andrighetto⁶⁾

¹⁾ CERN, ²⁾ CSIC, Madrid, Spain, ³⁾ CENBG, Bordeaux, France, ⁴⁾ PSI, Villigen, Switzerland, ⁵⁾IPN, Orsay, France, ⁷⁾INFN LNL, Legnaro, Italy

Alexander Gottberg

Poster 29 S. Rothe et al.: Resonant Laser Ionization of At Isotopes

Now available due to intense development efforts:

- 30 different target materials
- 5 different transfer line designs
- 12 different ion sources

Poster 23 T. Mendonça et al.: Production of ¹⁸Ne by a High Power Molten Salt Target for Beta Beams Oral presentation: Bruce Marsh: Radioactive Ion Beams with RILIS

>1000 isotopes from 72 elements

Poster 24 J.P. Ramos et al.: Short-Lived Ar Isotopes from Nanograined CaO

Poster 25 D. Fink et al.: Purification of laser ionized isotopes by LIST

Poster 27, Poster 30 M. Kronberger et al.: The HELICON Plasma Ion Source for Molecular Beams C. Seiffert et al.: Extraction of Short Lived C Isotopes

Alexander Gottberg

Radioactive Beams at ISOLDE in 2011

Mass Element Mass Element Mass Element Mass Element Mass Element Mass Element	
6 He 35 Ar 68 Ni 95 Rb 139 Nd 180 Hg	
8 He 36 Ar 69 Ge 96 Kr 139 Pr 180 TI	
8 Li 40 Cl 69 Ni 98 Rb 139 Sm 180 Yb	Mass Element
8 LiO 42 K 70 As 101 Ag 140 Cs 181 TI	205 Fr
9 Li 43 Ar 70 Ga 103 Cd 140 La 182 TI	205 Rn
10 C 45 K 71 As 104 Cd 140 Nd 183 TI	206 Fr
10 CO 45 Ti 71 Kr 106 Rh 140 Pr 184 Tl	206 Hg
11 CO 46 Sc 71 Ni 107 Cd 140 Sm 186 Pb	206 TI
13 NO2 47 K 71 Zn 110 Ag 141 Nd 186 TI	207 Fr
15 CO 48 Cr 72 Kr 111 Ag 141 Sm 188 Hg	208 Fr
16 NO 49 K 72 Ni 111 Cd 142 Cs 188 Pb	208 Hg
16 CO 49 Ti 72 Se 111 In 142 Dy 188 TI	208 Rn
17 NO 50 K 72 Zn 112 Pd 142 Pr 189 Hg	208 TI
19 Ne 50 Sc 73 As 113 Ag 142 Sm 190 Pb	209 At
20 Mg 51 K 73 Ga 114 Ag 143 Sm 190 Tl	214 Fr
20 Na 51 Ti 73 Kr 114 Cd 147 Nd 191 Hg	217 At
21 Mg 52 Fe 74 As 115 Ag 149 Tb 192 Hg	218 At
21 Na 52 Ti 74 Kr 117 Ag 151 Dy 193 At	220 At
22 Mg 53 Fe 74 Zn 118 Cd 152 Dy 193 Hg	220 Fr
22 MgO 55 Co 76 Zn 118 In 152 Nd 194 At	220 Rn
23 Mg 55 Cr 77 Br 124 In 152 Tb 194 Pb	222 At
24 Al 56 Cr 77 Zn 126 Cd 157 Dy 195 Hg	222 Fr
24 Na 57 Co 78 Zn 128 Cd 157 Eu 195 Tl	222 Rn
25 Al 57 Cr 79 Zn 128 Cs 165 Dy 196 At	223 Fr
25 Na 58 Cu 80 As 129 Te 167 Dy 196 Pb	224 Fr
26 Na 60 Co 80 Rb 130 Cs 168 Dy 197 Hg	226 Fr
27 Mg 61 Fe 80 Zn 131 Cs 168 DyO 198 Ir	227 Fr
27 Na 61 Cu 81 Rb 131 Xe 169 Yb 199 At	228 Fr
28 Mg 61 Mn 81 Zn 132 Cs 172 Er 199 Hg	229 Fr
30 Mg 62 Co 82 Rb 135 Pr 176 Yb 200 Fr	230 Fr
30 Na 63 Co 82 Zn 136 Cs 178 Hg 200 Pb	231 Fr
31 Al 63 Ni 83 Br 136 Pr 178 Tl 201 Fr	232 Fr
31 Mg 65 Ni 83 Zn 137 Cs 178 Yb 202 Fr	232 Th
32 Ar 66 Ga 84 Kr 137 Pr 179 Lu 202 TI	233 Fr
33 Ar 66 Ni 86 Kr 138 Cs 179 Tl 204 At	233 Ra
33 Cl 67 Cu 91 Kr 138 Nd 179 Yb 204 Tl	234 Ra
34 Ar 67 Ni 93 Rb 138 Pr 180 Hf 205 At	238 U

Production of Radioisotopes

- transport
- $\rightarrow \epsilon_{T 1,2,...}$

Actinide targets at ISOLDE in 2011 (2010)

- 249 shifts out of 396 \rightarrow 68% of total (72%)
- 13 new units (12 new, 2 old)

CER

Actinide targets at ISOLDE in 2011 (2010)

- 249 shifts out of $396 \rightarrow 68\%$ of total (72%)
- 13 new units (12 new, 2 old)

ER

Motivation: CaO (Master thesis of J. P. Ramos, P24)

ERN

 $UO_2 + 6C \rightarrow UC_2 + 2C + 2CO_{(g)}$

P.Y. Checalier et al., J. Nuc. Mat. 288 (2001) 100-129

CERN

Production Process:

- 1. Blending UO₂ and C powder
- 2. Cold pressing into pills
- 3. Carbothermic reduction of UO₂

Current UC_x at ISOLDE

see also: C. Lau et al., NIM B, 204, 246 (2003)

 ρ_{bulk} = 3.5±0.8 g/cm³ 11.3 g/cm³ (TD)

BET: 2.6±0.9 m²/g

f radioactive isotopes from this material?!

short-lived ³⁰Na (48ms) from bulk Re surface ion source

short-lived ³⁰Na (48ms) from bulk Re surface ion source

CERM

Task 1: Synthesis of new actinide targets (CERN, INFN, IPNO) Subtask 1: Sol-gel synthesis in complex fluids Subtask 2: Nanostructures

<u>Task 2: Characterization of actinide targets (CERN, INFN)</u> Subtask 1: Microstructure, porosity, specific surface, crystalline phase Subtask 2: Emissivity, thermal conductivity at high temperature

Task 3: Actinide targets properties after irradiation (CERN, PSI) Subtask 1: Post-irradiation examination of target prototypes

<u>Task 4: Online tests of actinide targets (CERN, GANIL, IPNO)</u> Subtask 1: Impact of pulse time structure on release and ageing properties Subtask 2: Analysis of the results-effusion and diffusion phenomena

Current UC_x at ISOLDE: SEM / FIB

as operated (2100°C for 5 days)

Importation from Rosatom (Russia) of HD-UC pellets to CERN & online tests in Nov. 2010:

300 pills

 UC (²³⁵U:0.38%), 13.2mm diam., 1mm thick, 12.7g/cm³, avg. grain 6 μm, UC₂<4%

FRI

Yields from HD UC

HD absolute yields @ ISOLDE (450g) x2 to x10 lower than from conventional UC targets (~100g)

ER

Beamline X05LA @ SLS, PSI offers: hv = 5 - 20 keV, $\Delta E/E = 2 \cdot 10^{-4}$, $1 \times 1 \mu m^2$

- X-Ray Diffraction (XRD)
- X-Ray Fluorescence Spectroscopy (XFS)

• X-ray absorption fine structure (XAFS, NEXAFS, EXAFS)

Results from first X-ray absorption experiments on UC

R

Micro Spot Material Mapping at SLS

Transfer sample to SLS and perform micro spot fluorescence mapping

Preliminary data taken last week

ER

Micro Spot Crystallite Mapping at SLS

2,

non-irradiated

Preliminary data taken last week

Post irradiation proposal for SLS beamtime approved by the SLS scientific committee

- UC_x is the by far most used target material for recent and future ISOL facilities
- intense development on UC_x material indispensable, for
 - accessing more exotic isotopes
 - addressing the demanded intensity enhancement
 - overcoming significant ageing effects for some isotopes
 - realizing longer target lifetime
- ActiLab in FP7-ENSAR:
 - Material analysis before irradiation reviled first unexpected results
 - Online tests of a HD-UC target was performed, results will be published soon
 - Online tests of a tailored UC_{x} is foreseen for the end of this year
 - Post-irradition tests are arranged and will take place in 2013 at PSI
 - Irradiation tests on several prototypes are planned at IPN-Orsay

) INFN Istituto Nazionale di Fisica Nucleare

CERN

Thank you for your attention!

EURORIB'12, Abano Terme, 23.05.2012

Yields from HD UC

Comparable absolute yields (Gatchina 91g/cm², conventional ISOLDE ≈45g/cm²)
HD absolute yields @ ISOLDE (241g/cm²) x2 to x10 lower than from conventional UC targets

Sample Preparation for Irradiated Actinide Targets

CER

ISOLDE – Beamline Overview

CERN

Hg Yield vs. Pb Evaporation Rate & Tl/In Contamination

Hg Yield vs. Pb Evaporation Rate & Tl/In Contamination

Tuning target container to 320°C (< Pb melting point 327°C) → minimized coating of extraction electrode

Careful tuning of VADIS ion source \rightarrow Hg 7, Tl \searrow

Tuning target container to 320°C (< Pb melting point 327°C) → minimized coating of extraction electrode

Careful tuning of VADIS ion source \rightarrow Hg $\nearrow,$ Tl \searrow

n-Converter and Quartz Line for Purified Zn Beams

Line Temperature [°C]

Quartz Heating [A]

- Dr. Thierry Stora
- Dr. M. Kronberger: ion sources (JYFL)
- C. Seiffert: molecule evaporation (U. Darmstadt)
- R. Luis: neutronics (ITN, Lisboa)
- Dr. A. Gottberg: target materials, incl. Uranium (U. Bordeaux, IEM-CSIC Madrid, ENSAR-FP7, ActILab).
- J. P. Ramos: target materials (Univ. Aveiro)
- M. Czapski: material analysis support (CATHI ITN Marie-Curie program)
- T. Mendonça: High power targetry for neutrino physics (CERN PJAS)
- S. Cimino: High power targetry (CATHI ITN Marie-Curie program)

GANIL, IPNO, INFN, PSI (Uranium, ENSAR "ActILab") + ORNL, TRIUMF ITN (neutronics) EPFL, Univ. Aveiro, ITN (materials) ESS, CEA, SCKCEN-Myrrha (high power targetry)

Yields from nano grained Y_2O_3 -Vadis (in 2011)

53Fe: 3E4 1/µC 4E7 1/μC 52Mn: 2E4 1/µC 55Cr: 48Cr: 4E6 1/µC 49Cr: 2E5 1/µC 3E7 1/µC 57Co: 56Cr 56Mn 72Kr: 2E4 1/µC 73Kr: 7E5 1/µC