Shell structure far off stability studied via high-energy reactions

Chiara Nociforo GSI, Darmstadt

Evolution of the nuclear shell structure ($6 \le Z \le 13$) and recent experimental studies of direct reactions in inverse kinematics at in-flight RIB facilities

• one-neutron removal reactions (nuclear and e.m.)

Effects of weak binding

- interaction cross sections
- charge-changing cross sections

Magic numbers and shell gaps

To what extent the shell model is still valid in nuclei with large proton-neutron asymmetry ?

• unusual combination of large isospin and weak binding energy

 \rightarrow large diffuseness of nuclear surface (<u>halo</u>), skin = $\tilde{r_n} - \tilde{r_p}$

In addition, coupling to the continuum is important for pairing, deformations and threshold strength functions. "EURORIB '12" – C. Nociforo

Drip-line studies in O isotopes

The neutron drip line is reached for Z=8

- Non existence of bound doubly magic nucleus ²⁸O, as well as ²⁶O
 - H. Sakurai et al. PLB 448 (1990) 180
 - D. Guillemaud-Mueller et al. PRC 41 (1990) 937
 - A. Schiller et al. PRC 72 (2005) 037601
- Deduced effective matter density in O nuclei
 A. Ozawa *et al.* NPA 691 (2001) 599
- Non existence of bound excited states in ^{23,24}O M. Stanoiu *et al.* PRC 69 (2004) 034312
- Measurement of *I=2* resonance in ²⁵O
 C.R. Hoffman *et al.* PRL 100 (2008) 152502

gap *s1/2–d3/2* : 4.86(13) MeV

Presence of a spherical shell closure — measuring the **neutron occupancy**

1n removal reactions

Sensitivity of the p// distribution to single particle states:

- Shape of $d\sigma/dp_{//}$ of the residual nucleus $\rightarrow l_n$ of the removed nucleon
- Cross section $\sigma_{-1n} \longrightarrow$ spectroscopic factors

Pioneered at GANIL, GSI, MSU and RIKEN "EURORIB '12" – C. Nociforo

N =16 magic number and shell gap

R. Kanungo et al., PRL 102 (2009) 152501

²³O states

Spin	SDPF-M	SDPF-M	USDB	USDB	Exp
	Energy(MeV)	C^2S	Energy(MeV)	C^2S	\mathbf{S}
$1/2^{+}$	0.0	1.769	0.0	1.810	1.74(19)
$5/2^{+}$	2.586	5.593	2.593	5.665	
$3/2^{+}$	4.736	0.065	4.001	0.090	

... in agreement with shell model calculations

s-wave dominance indicates the presence of a new shell closure at N=16 in ^{24}O

Comparison between O and C systematics

O. Sorlin, M.-G. Porquet / Progress in Particle and Nuclear Physics 61 (2008) 602-673 $E(2^+) = 4.7$ MeV C.R. Hoffman et al. PLB 672 (2009) 17 С 0 E(2⁺) (MeV) 5 $B(E2) = 7.5 e^{2} fm^{4}$, increases at N=14 20**C** 24**(** M. Petri et al. PRL 107 (2011) 102501 0 Effective Single Particle Energy (MeV) N=14 gap does not exist, 5 d_{3/2} d_{5/2} starts to be filled in¹⁶C d2/7 0 16 N=16 gap -5 predicted in ²²C, candidate as doubly magic nucleus 20 5 10 20 5 10 15 15 Neutron Number Neutron Number

N=20 gap evolution

T. Otsuka et al., PRL 104 (2010) 012501

Direct measurements of the weakness of the N=20 shell closure are difficult at lower Z

The n-rich Al isotopes are easier to access experimentally and are located in a *transition* region between the spherical shell of Si nuclei and the deformed Mg isotopes.

Two-neutron separation energy S_{2n}

E. Caurier, et al., PRC 58 (1998) 2033

AI: Exp S_{2n} do not show anomalies and are perfectly reproduced by shell model calculations involving the full *sd* proton shell (Z=8) and the *pf* neutron shell (N=20) as valence space

Al isotopic chain (A=32-36)

• β -decay and g-factor measurements available up to A=34

```
magnetic moments measurements of <sup>33,34</sup>Al performed at GANIL show
large discrepancies with shell model predictions

→ non-negligible presence of intruder configurations

~ 25% in <sup>33</sup>Al and 60% in <sup>34</sup>Al, at least

(P. Himpe, et al., PLB643 (2006) 257, PLB658 (2008) 203)

→ polarization effects due in even-mass Al (N=21-23)

to the unpaired 1d<sub>5/2</sub> proton

pf shell

N =20

1d_{5/200000x}

p n
```

1n removal reactions test the neutron single particle structure

³³Al \rightarrow n + ³²Al at 922 MeV/u

 σ_{-1n} = 64±3 mb, Γ_{FWHM} = 136±3 MeV/c

 $\begin{array}{c} {}^{33}\text{Al}_{g.s.}(5/2^{+}): \text{ shell model calc. (USDB)} \\ \begin{array}{c} {}^{C2}\text{S} = 1.40 (/=0) & & 15-40\% \text{ higher} \\ {}^{C2}\text{S} = 3.61 (/=2) & & \\ {}^{p} \text{ shell } & {}^{S_{n}=5.54 \text{ MeV}} \\ {}^{N} = 20 & & \\ {}^{1d_{5/2}00000X} & & \\ \end{array} \\ \begin{array}{c} {}^{n} \text{ n} & & \\ \end{array} \\ \begin{array}{c} {}^{d}\text{Adding } /=1, 3 & & \\ (p- \text{ and f-waves)} & & \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \text{with negative} \\ \text{parity} \\ \text{core state} \\ (\underline{E}(4^{-})=1.2 \text{ MeV}) \end{array}$

does not change the results of the fit

--- fit assuming $S(\neq 0) = 0$ $S(\neq 1) < 1.63$, 60% upper limit intruder configurations

Mixing in ³³⁻³⁵Al _{g.s.}

$$\sigma_{-1n} = \sum_{l} S_{l} \sigma^{sp}(\psi_{nlj} \otimes Al(I_{c}^{\pi}))$$

Evolution of single particle neutron occupancy

C. Nociforo *et al.*, PRC 85 (2012) 044312

Lowering of 2p_{3/2} in ³³Mg

From the momentum analysis $J^{\pi}=3/2^+$ cannot be excluded

The shape of the p// distribution is much narrower than predictions, suggesting a larger occupancy of neutrons in the $2p_{3/2}$ orbital

R. Kanungo et al., PLB 685 (2010) 253

T. Nakamura et al., PRL 103 (2009) 262501

M. Takechi et al., PLB 707 (2012) 357

Direct breakup model

After projection on *core* states I_c^{π} , identified by means of γ -ray coincidences :

E1 matrix element

 $N_{E1}(E^*)$ calcultated in semiclassical approx.

$$\frac{d\sigma}{dE^*}(I_c^{\pi}) = \frac{16\pi^3}{9\hbar c} N_{E1}(E^*) \sum_{nlj} C^2 S(I_c^{\pi}, nlj) \sum_m \left| \left\langle \mathbf{q} \left| \frac{Ze}{A} r Y_m^1 \right| \psi_{nlj}(\mathbf{r}) \right\rangle \right|^2$$

spectroscopic factor

The differential cross section for e.m. excitations provides information on the quantum numbers and spectroscopic factors of ground state configuration

Advantages

- interaction is well known
- high energy approximation
- sensitivity to low / values

Limitations

- core excited states to be identified
- only for weakly bound breakup systems

Pioneered at RIKEN and GSI

Mg systematics

Few-body Glauber model (optical limit + high order terms)

previous GSI data (Suzuki *et al. 1998*)

³²Mg : $\widetilde{r}_n - \widetilde{r}_p \sim 0.13$ fm

Isotope	σ_I^C (mb)	$\sigma_I^{\rm H}$ (mb)	$\frac{R_{\rm rms}^m({\rm ex})}{({\rm fm})}$	HF [6] ^a (fm)	RMF [20] (fm)
³² Mg	1331(24)	523(47)	$\begin{array}{c} 3.17 \pm 0.11 \\ 3.19 \pm 0.03 \\ 3.23 \pm 0.13 \\ 3.40 \pm 0.24 \end{array}$	3.20	3.21
³³ Mg	1320(23)	552(45)		3.23	3.26
³⁴ Mg	1372(46)	568(90)		3.26	3.33
³⁵ Mg	1472(70)	657(160)		3.30	3.38

 ^{32}Mg : R_c = 3.1863(161) fm

• odd-even staggering

correlation with the n configuration

D.T. Yordanov et al., PRL 108 (2012) 042504

Measurements for some stable nuclei are not consistent with Berkeley data W.R.Webber *et al.*,PRC 41(1990) 520 *"EURORIB '12"* – C. Nociforo

Summary

Recent experimental studies performed by using *standard* tools (σ_{-1n} , $p_{//}$, $\sigma_{e.m.}$, σ_{I} , σ_{cc}) to understand the structure of weakly bound neutron-rich light nuclei:

• N = 16 spherical shell closure

- ²⁴O studies at GSI and MSU, new doubly magic nucleus
- ²²C studies at RIKEN, s-wave dominance

O systematics $\longrightarrow \sigma_{I}$ value consistent with $|^{23}O_{q.s.} > = |^{22}O(0^{+}) \otimes s_{1/2} >$

• N = 20 gap quenching

- ³³⁻³⁵Al, ³³Mg studies at GANIL and GSI, lowering of 2p_{3/2} Mg systematics \longrightarrow matter and charge radii, moderate skin in ³²Mg

- ³¹Ne studies at RIKEN, s- or p-wave dominance Ne systematics _____ ^{29,31}Ne halo candidates

Opportunities for research with reactions of drip-line nuclei are foreseen at present and future RIBs facilities. "EURORIB '12" – C. Nociforo

Acknowledgments

T. Aumann¹, D. Boutin², B. A. Brown⁴, D. Cortina-Gil⁵, B. Davids⁶, M. Diakaki⁷,

A. Estrade¹, F. Farinon^{1,2}, H. Geissel¹, R. Gernhäuser⁸, R. Janik⁹, B. Jonson¹⁰, R. Kanungo³,

B. Kindler¹, R. Knöbel^{1,2}, R. Krücken⁸, N. Kurz, M. Lantz¹⁰, H. Lenske², Yu.A. Litvinov¹,

K. Mahata¹, P. Maeirbeck⁸, A. Musumarra^{11,12}, T. Nilsson¹⁰, T. Otsuka¹³, C. Perro³,

A.Prochazka^{1,2}, C. Scheidenberger^{1,2}, B. Sitar⁹, P. Strmen⁹, B. Sun², I. Szarka⁹, I. Tanihata¹⁴, H. Weick¹, M. Winkler¹

¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
 ²Justus-Liebig University, Gießen, Germany
 ³Astronomy and Physics Department, Saint Mary's University, Halifax, Canada
 ⁴NSCL, Michigan State University, East Lansing, USA
 ⁵Universidad de Santiago de Compostela, Santiago de Compostela, Spain
 ⁶TRIUMF, Vancouver, Canada
 ⁷National Technical University, Athens, Greece
 ⁸Physik Department E12, Technische Universität München, Garching, Germany
 ⁹Faculty of Mathematics and Physics, Comenius University, Bratislava, Slovakia
 ¹⁰Fundamental Physics, Chalmers University of Technology, Göteborg, Sweden
 ¹¹Università di Catania, Catania, Italy
 ¹²INFN-Laboratori Nazionali del Sud, Catania, Italy
 ¹³Center for Nuclear Study, University of Tokyo, Saitama, Japan
 ¹⁴Research Center for Nuclear Physics, Osaka, Japan