Scattering of the halo nucleus ¹¹Li and its core ⁹Li on ²⁰⁸Pb at energies around the Coulomb barrier

Mario Cubero Campos Instituto de Estructura de la materia, CSIC On behalf of the E-1104 Collaboration: IEM-CSIC - U. Aarhus - U. Chalmers -U. Huelva- U. Lisboa – U. St. Marys - U. Sevilla - U. York –TRIUMF

Motivation

Due to loosely bound structure of the halo nuclei, the reaction mechanism at energies close to the Coulomb barrier will be affected.

Reaction Mechanisms

Reaction Mechanisms

Objetives

- To study the dynamics of ¹¹Li and ⁹Li beams in a strong electric field at energies around the Coulomb barrier.
- Measured at the ISACII-TRIUMF Facility the angular distribution of elastic and inelastic scattering of ¹¹Li+²⁰⁸Pb at 24.2 and 29.7 MeV and ⁹Li+²⁰⁸Pb at 24, 29.5 and 33 MeV laboratory energies.

- Compare the results with dispersion models developed for this type of nuclei.
- The ⁹Li+²⁰⁸Pb data was used to tune the potential using the double-folding São Paulo Potential (SPP) for the real part and for the imaginary part a Woods-Saxon potential.
- The ¹¹Li scattering data will be compare with CDCC calculations

This is the first determination of the angular distribution of the cross section for ¹¹Li+²⁰⁸Pb and ⁹Li+²⁰⁸Pb.

Mario Cubero

Particle Identification

Particle Identification dEvsE

4 telelescopes

Detector Pixel data

Angular and pixel data

Ring -> Sum Pixels

Elastic & Breakup / ¹¹Li & ⁹Li Data @ C.M. Energy

other Dependential

Mario Cubero

11**T** ;

35000

30000

Cross section @ Backward angles

Angular Optimization with Coincidence data

Color points represent the pixel calculation of the differential cross section divided by Rutherford. Each color represents a detector. Accurate position for the detector can be calculated improving **x2** minimización.

Minimization procedure:

- Calculate position and solid angle for each pixel.
- Select the pixels in the rings for each detector.
- Change between LAB to CM.
- Minimization of χ2 of the NCountsCM/Ruth = 1

Minimized data according to Rutherford.

Elastic Scattering of ^{9,11}Li@24 MeV, 29.5 MeV

Model	Energy (MeV/u)	N_r	$W_i(MeV)$	χ^2/n
OM	3.27	0.883	6.01	4.1
OM	3.67	0.798	17.6	6.4
CC	3.27	0.85	6.50	4.2
CC	3.67	0.95	17.18	6.2

- Elastic scattering of ⁹Li on ²⁰⁸Pb @
 2.67 MeV/u follows Rutherford.
- The real part of the potential is from double folding Sao Paolo Potential (SPP) and the imaginary part from a Wood Saxon.
- It is possible to describe the data with fixed geometry, $r_i = 1.35$ fm , $a_i = 0.51$ fm
- The fact that N < 1 =>

Attractive polatization effect

- The contribution of 1st excited state in ⁹Li included in CC calculation
- •The OM and CC reproduce similarly well the data.

Mario Cubero

Results and Discussion

•These data have been compared with CDCC calculations assuming a two-body model for ¹¹Li (⁹Li+2n) and using for the ⁹Li+²⁰⁸Pb interaction the potential deduced from ⁹Li data [1,2,3]. The inclusion of a 1⁻ resonance in ¹¹Li has been considered and improves greatly the agreement with the data.

•The special behaviour of ¹¹Li is associated to the effect of Coulomb Dipole Polarizability[4] and coupling to the continuum. •The experimental data for the elastic scattering of ¹¹Li + ²⁰⁸Pb display a strong reduction with respect to Rutherford, over the whole angular range, at both energies. In contrast to the behaviour of the data for ⁹Li, which behaves as a *normal* nucleus.

M. Cubero et al., Eur. Phys. J web of conf 17, 16002 (2011).
 L. C. Chamon, et al. Phys. Rev. C. 66, 014610 (2002).
 C.M. Perey and F.G. Perey Phys. Rev. 132, 755 (1963).
 M.V. Andres et al. Phys. Rev. Lett 82, 1387, (1999).

Mario Cubero

• We had presented the first data of the elastic scattering of the halo nucleus ¹¹Li and its core ⁹Li on ²⁰⁸Pb at energies below and around the Coulomb barrier .

- The ⁹Li + ²⁰⁸Pb scattering data behave as expected.
- The strong reduction of the ¹¹Li + ²⁰⁸Pb elastic cross section observed both below and around the Coulomb barrier, has been interpreted as due to the dipole coupling of the ground state to low energy continuum states.
- We are going to extended this studies to the ¹¹Be case in July 2012.

•Four body calculation to describe the dynamics of the system are in progress.

Mario Cubero

Acknowledgments

On behalf of the E-1104 Collaboration:

M.J.G. Borge¹, L. Acosta², M. Alcorta¹, M.A.G. Alvarez^{3,4}, C. Diget⁵, J.P. Fernández-García³, H.O.U. Fynbo⁶, D. Galaviz¹, J. Gomez-Camacho^{3,4}, R. Kanungo⁷, J.A. Lay³, M. Madurga¹, I. Martel², A.M. Moro³, I. Mukha³, T. Nilsson⁸, A.M. Sánchez-Benítez², A. Shotter⁷, O. Tengblad¹, P. Walden⁷.

¹ Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid, Spain

²Departamento de Física Aplicada, Universidad de Huelva, E-21071, Huelva, Spain

³ Departamento de FAMN, Universidad de Sevilla, E-41080 Sevilla, Spain

⁴ Centro Nacional de Aceleradores, Universidad de Sevilla, Av. Thomas A. Edison, E-41092 Sevilla, Spain

⁵ Department of Physics[,] University of York, York, UK

⁶ Department of Astronomy and Physics, University of Aarhus, DK-8000, Aarhus, Denmark

⁷ TRIUMF, V6T 2A3 Vancouver, British Columbia, Canada

⁸ Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

Mario Cubero

Thank you very much for you attention

