What can we learn about the shapes of heavy nuclei from Coulex of radioactive beams?

Peter Butler

University of Liverpool

Shape coexistence in ¹⁸²⁻¹⁸⁸Hg

Octupole collectivity in ²²⁰Rn, ²²⁴Ra

T. Grahn et al. PRC 80 (2009) 014324 Cologne plunger @JUROGAM+RITU

See also N Kesteloot's talk on Friday – ²⁰⁰Po

P Butler EIVERPOOL

Rotational Invariants

see D Cline, Ann Rev Nucl Part Sci 36(1986)683

$$E(2,0) = Q\cos \delta$$

$$E(2,1) = E(2,-1) = 0$$

$$E(2,2) = E(2,-2) = (1/\sqrt{2}) \bullet Q\sin\delta$$

$$[E2xE2]^0 = \frac{1}{\sqrt{5}}Q^2$$

$$\left\{ [E2xE2]^2 xE2 \right\}^0 = \frac{\sqrt{2}}{\sqrt{35}}Q^3 \cos 3\delta$$

Hg Summary

In this case cannot determine diagonal 2⁺ matrix elements precisely.

However, can we show that:

Ground state has weak oblate deformation;

Second 0⁺ state has increasing deformation with A and for ^{182,184}Hg probably not prolate (triaxial)

Studies of shape-coexistence in Hg

A. Andreyev², B. Bastin², P.Butler¹, A. Blazhev¹², **N. Bree**², B. Bruyneel¹², M. Carpenter⁶, J. Cederkäll¹¹, E. Clement³, T.E. Cocolios², T. Davinson⁷, P. Delahaye³, J. Diriken², J. Eberth¹², A. Ekstrom¹¹, L. Fraile³, C. Fransen¹², T. Grahn¹, **L. Gaffney**¹, M. Guttormsen⁴, K. Hadynska⁵, R.-D. Herzberg¹, M. Huyse², O. Ivanov², D.G. Jenkins⁸, R. Julin⁹, S. Knapen², Th. Kroell¹⁰, R. Krücken¹⁰, A.C. Larsen⁴, P. Marley⁸, P.J. Napiorkowski⁵, J. Pakarinen¹, N. Patronis², **A. Petts**¹, P.J. Peura⁹, E. Piselli³, P. Reiter¹², M. Scheck¹, S. Siem⁴, I. Stefanescu², J. Van de Walle³, P. Van Duppen², D. Voulot³, N. Warr¹², F. Wenander³ **K. Wrzosek-Lipska²** and M. Zielinska⁵

¹⁸²⁻¹⁸⁴Hg Coulex@ISOLDE

⁶ Argonne National Laboratory, USA	¹ University of Liverpool , UK
¹² University of Cologne , Germany	¹¹ University of Lund, Sweden
³ CERN- ISOLDE	¹⁰ Technical University Munich , Germany
⁷ University of Edinburgh , UK	⁴ University of Oslo , Norway
⁹ University of Jyvaskyla , Finland	^₅ University of Warsaw , Poland
² University of Leuven, Belgium	⁸ University of York , UK

P. A. Butler¹, P. F. Bertone⁶, N. Bree⁴,
R. J. Carroll¹, M. Carpenter⁶, C. J. Chiara⁶,
A. Dewald², F. E. E. Filmer¹, C. Fransen²,
L. P. Gaffney¹, T. Grahn³, M. Hackstein²,
M. Huyse⁴, D. T. Joss¹, R. Julin³,
F. Kondev⁶, P. Nieminen³, R. D. Page¹,
J. Pakarinen⁵, S. V. Rigby¹, M. Scheck¹,
P. Van Duppen⁴, H. Watkins¹, and S. Zhu⁶

^{184,186}Hg lifetimes@ANL

⁶Argonne National Laboratory
²University of Cologne
⁵CERN-ISOLDE
³University of Jyvaskyla, Finland
⁴University of Leuven, Belgium
¹University of Liverpool, UK

Octupole 'Magic' Numbers

(184

- Octupole correlations occur between orbitals which differ in both orbital (¹) and total (j) angular momenta by 3
- Octupole 'Magic' numbers occur at 34, 56, 88 and 134
- Nuclei with both proton and neutron numbers close to these are the best candidates to show octupole effects

Tests of *CP* invariance in hadronic sector from static Electric Dipole Moment (EDM) of atom (best limits so far from ¹⁹⁹Hg on

$$\bar{\theta}_{\rm QCD} \ \bar{d}_{\rm d} \ C_T \ C_S \ \varepsilon_q^{\rm SUSY} \ \varepsilon^{\rm Higgs} \ \chi^{\rm LR}$$
)

 10^{-20}

 10^{-22}

Cs

Odd Rn or odd Ra?

P BL

²²⁴Ra matrix elements

P Butler UNIVERSITY OF

²²⁰Rn matrix elements

Summary: shape of octupole nuclei

Studies of octupole nuclei

M. Albers², B. Bastin¹², C. Bauer⁶, A. Blazhev², P.A. Butler¹, A. Blazhev², S. Bönig⁶,
N. Bree⁴, J. Cederkall¹³, T. Chupp¹⁰, D. Cline⁷, T.E. Cocolios⁹, J. Diriken⁴, L.P.
Gaffney¹, T. Grahn⁵, A. Hayes⁷, A. Herzan⁵, M. Huyse⁴, D. Jenkins¹¹, D.T. Joss¹, N.
Kesteloot⁴, M. Kowalczyk³, Th. Kröll⁶, E. Kwan⁸, K. Moschner², P. Napiorkowski³, M.
Pfeiffer², D. Radeck², K. Reynders⁴, S. Rigby¹, M. Rudigier², S. Sambi⁴, M. Scheck^{1,2},
M. Seidlitz², P. Thoele², P. Van Duppen⁴, M. von Schmid⁶, D. Voulot⁹, N. Warr², F.
Wenander⁹, K. Wrzosek-Lipska⁴, C.Y. Wu⁸, M. Zielinska³

²²⁰Rn, ²²⁴Ra Coulex@ISOLDE

²University of Cologne, Germany
⁶Technical University Darmstadt, Germany
¹⁴University of Edinburgh, UK
¹²GANIL, France
⁹CERN-ISOLDE
⁵University of Jyvaskyla, Finland
⁴University of Leuven, Belgium
⁸Lawrence Livermore Laboratory, USA
¹University of Liverpool, UK
¹³University of Lund, Sweden
¹⁰University of Michigan, USA
⁷University of Warsaw, Poland
¹¹University of York, UK

