### Recent results from VAMOS

In this presentation:
VAMOS
recent results using:

Low intensity radioactive beams
High intensity stable beams

### VAMOS++



Essential for nuclear structure and reaction studies

- ✓ Identification of reaction products
- ✓ Large acceptance

✓ Coupling with different arrays (EXOGAM, MUST2, TIARA, INDRA ...)



# Variable Mode Operation

- ✓ QQ Focusing Mode
- ✓ QQD Spectrometer
  - Variable Dispersion
- ✓ Recoil Separator
  - QQF(D)
  - QQD (Gas filled)



S. Pullanhiotan et al, NIMA 593 (2008) 343 C. Schmitt et al, NIM A 621 (2010) 558

### VAMOS Spectrometer Schematic View





# Focal Plane Setup





#### Si Wall





#### Drift Chamber

#### VAMOS Measurement (Software Spectrometer)



#### Experimental approach

-transfer reactions in inverse kinematics

Spectroscopy of Bound-Unbound states Ex, J<sup>π</sup>, Spectroscopic Factors (SF) θρ,Ερ A+1 θγ,Εγ Measurements -> Observables Ep and/or Ey ->Ex  $\Theta_p \rightarrow d\sigma/d\Omega \rightarrow (\ell, SF)$ 

Inverse kinematics->(d,p),(d,t),(d,<sup>3</sup>He),(d,d')

B. Fernandez-Dominguez et al, PRC 84, (2011), 011301

#### **Experimental Set-Up**



#### ANALYSIS : Example d(<sup>20</sup>O,p)<sup>21</sup>O



UNBOUND STATES:  $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$  (stripping)



UNBOUND STATES:  $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$  (stripping)



First 3/2+ state corresponds to the sought vd3/2

UNBOUND STATES:  $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$  (stripping)



Difficult to interpret unbound states with the standard Shell Model:

Relying on spectrocopic factors the 3/2+ state seems to favour USDA which predicts <sup>26</sup>O unbound

#### Multinucleon and Deep Inelastic Transfer Reactions

Beam: <sup>238</sup>U 5.5 MeV/u 2pnA Target <sup>48</sup>Ca 1 mg/cm<sup>2</sup>





#### NIMA 593, 343 (2008)

# **Identification spectra**



#### Neutron rich isotopes of Calcium



Doppler corrected using V from VAMOS

 $^{238}U(5.5 \text{ MeV/u}) + ^{48}Ca$ 

#### No new shell gap at N=34 in Calcium



M. Rejmund et al. PRC 76, 021304(R) (2007)

## VAMOS++ New Detection System



#### Detectors



### Acceptance





#### M. Rejmund et al, NIM A 646 (2011) 184

### Prompt Gamma Spectroscopy of Fission Fragments

- Beam:

   2<sup>38</sup>U
   6.2 MeV/u

   Target

   <sup>9</sup>Be
  - $> 2 mg/cm^2$



#### Preliminary Results Only

# **Identification of the Element**



# Identification of the Isotope



### Ey vs A for Zr Z=40

#### Gamma Energy



### Eγ vs A for Ru Z=44

#### Gamma Energy



Mass



## <sup>112</sup>Ru y-y coincidences

![](_page_26_Figure_1.jpeg)

## VAMOS Gas Filled

- C foil before the target for vacuum/gas separation
- ✓ He gas-filling ~(0.2–1.3) mbar
- ✓ beam dump (Ta plate)

![](_page_27_Figure_4.jpeg)

 $(\sigma_{FR} \sim 50 \text{mb})$ 

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_7.jpeg)

Ch.Schmitt et al., NIMA621(2010)558

### Spectra

![](_page_28_Figure_1.jpeg)

![](_page_29_Picture_0.jpeg)

#### <u>Optimal conditions</u> : Bp<sub>0</sub>=1.65Tm and p ~ 1mbar (with present <u>simple</u> set-up Beam rejection factor > 10<sup>10</sup>

No direct beam on the detectors for 1.2.10<sup>10</sup> <sup>40</sup>Ca per sec sent in VAMOS

#### Transmission (from ion-optical calculations)

![](_page_29_Figure_4.jpeg)

#### Improvements towards physics experiments

 $\checkmark$  Beam dump behind VAMOS and shielded ( $\downarrow$  scattering from there)

- $\checkmark$  Differential pumping system ( $\downarrow \gamma$ -background)
- Recoil Decay Tagging with MUSETT (ER-decay correlation)

Larger beam rejection and transmission

![](_page_30_Figure_5.jpeg)

# Tomorrow and the day after

- Old mechanisms with modern tools provide unique insights to the physics of nuclei towards drip line
  - Gamma spectroscopy of neutron rich exotic nuclei
    - Transfer Reactions
    - Fission
  - Gamma spectroscopy of heavy nuclei
    - Fusion

Ensures fruitful endeavors with SPIRAL2

#### **BOUND STATES:** d(<sup>20</sup>O,p)<sup>21</sup>O (stripping)

![](_page_32_Figure_1.jpeg)

**ADWA** Calculations

The 5/2+ and 1/2+ states carry most of the available strength of the v0d<sub>5/2</sub>, v1s<sub>1/2</sub>

 $0d_{5/2}$   $1s_{1/2}$ 

|                   | Ехр        | USD   | USDA  | SDPF-M |
|-------------------|------------|-------|-------|--------|
| εd <sub>5/2</sub> | -6.47(171) | -6.05 | -6.06 | -5.67  |
| εs <sub>1/2</sub> | -4.18(100) | -3.54 | -3.44 | -2.67  |

#### CONCLUSIONS

TIARA/MUST2+VAMOS+EXOGAM:Poweful set-up to study the transfer to bound and unbound states with full channel identification.

<sup>20</sup>O(d,p)<sup>21</sup>O:

-First unbound 3/2+ state corresponds to the s.p.  $vd_{3/2}$  with ~ 60% of the strength favours the USDA interaction that predicts the <sup>26</sup>O unbound.

-Second unbound state is consistent with a (3/2+, 7/2-) state and has a branching ratio of 0.71(22) to the  $2_{1}^{+}$  in  ${}^{20}O$ , which indicates a significant component of core-excitations.

-Information on the  $\epsilon d_{5/2}$ ,  $\epsilon s_{1/2}$  has also been obtained.

#### Description of data need models that contain explicitly the continuum