

Nuclear structure of exotic neutron-rich nuclei with the AGATA spectrometer

Jose Javier Valiente Dobón Laboratori Nazionali di Legnaro (INFN), Italia

From stable to Radioactive Ion Beams

AGATA is a last generation gamma spectrometer built to serve the most demanding needs of present and future Radioctive Ion Beam (RIB) facilities.

Overview

- Introduction
- Lifetimes with AGATA
- Heavy neutron-rich via the binary partner
- Future perspectives

LNL experiments in the n-rich region

AGATA Demostrator

AGATA (Advanced GAmma Tracking Array)

No anticompton – No collimators a pure ball of Ge.

The innovative use of detectors (pulse shape analysis, γ-ray tracking, digital DAQ) will result in high efficiency (~40%), excellent energy resolution and high counting rates 50 kHz.

The AGATA demonstrator array

5 asymmetric triple-clusters 36-fold segmented crystals 555 digital-channels Eff. $3 - 7 \% @ M_g = 1$ Eff. $2 - 4 \% @ M_g = 30$ On-line PSA and γ -ray tracking In beam Commissioning First Test Site: Laboratori Nazionali di Legnaro Main issue is Doppler correction capability \rightarrow coupling to beam and recoil tracking devices

PRISMA

AGATA references

Nuclear Instruments and Methods in Physics Research A 654 (2011) 88-96

Conceptual design and infrastructure for the installation of the first AGATA sub-array at LNL

A. Gadea^{ab,*}, E. Famea^b, J.J. Valiente-Dobón^{*}, B. Million^c, D. Mengoni^{4,b,j}, D. Bazzacco^b, F. Recchia^b,
A. Dewald^{*}, Th. Pissulla^c, W. Rother^e, G. de Angelis^a, A. Austin^f, S. Aydin^{b,t}, S. Badoer^a, M. Bellato^b,
G. Renzoni^c, I. Rerti^a, R. Reunardⁱ, R. Firkenhach^c, F. Fissiato^a, N. Blasi^c, C. Roiano^c, D. Rortolato^b,
A. Bracco^{gc}, S. Brambilla^c, B. Bruyneel^{*}, E. Calore^a, F. Camera^{gc}, A. Capsoni^c, J. Chavas^b, P. Cocconi^a,
S. Coelli^c, A. Colombo^b, D. Conventi^a, I. Costa^a, L. Corradi^a, A. Corsi^{gc}, A. Cortesi^c, F.C.L. Crespi^{gc},
N. Dosme^c, J. Eberth^c, S. Fantinel^{*}, C. Fanin^b, E. Fioretto^{*}, Ch. Fransen^c, A. Gizz^{gc}, A. Gottardo^{c,b},
X. Grave^k, J. Grebosz⁻ⁿ, R. Griffiths^f, E. Grodner^{*}, M. Gulmini^{*}, T. Habermann¹, C. He^{*}, H. Hess^e,
R. Isocrate^b, J. Jolie^c, P. Jones^m, A. Latina^a, E. Legay^o, S. Ienzi^{db}, S. Leoni^{gc}, F. Lelli^a, D. Iersch^e,
S. Lunardi^{db}, G. Maron^{*}, R. Menegazzo^b, C. Michelagnoli^b, P. Molini^{*}, G. Montagnoli^{db},
D. Montanari^{gc,b}, O. Möller^p, D.R. Napoli^{*}, M. Nicoletto^b, R. Nicolini^{gz,e}, M. Ozilleⁱ, G. Pascovici^e,
K. Peghin^b, M. Pignanelli^{ge}, V. Pucknell^f, A. Pullia^{ge}, L. Ramina^b, G. Salvato^b, J. Strachan^f, E. Sahin^a,
F. Scarlassara^{db}, J. Simpson^f, A.M. Stefanini^a, O. Stezowski^q, F. Tomasi^c, N. Toniolo^a, A. Triossi^b,
M. Turcato^b, C.A. Ur^b, V. Vandone^{ge}, R. Venturelli^b, F. Veronese^b, C. Veyssiere^r, E. Viscione^c,

^a istituto Nationale di Esica Nucleure, Laboratori Nazionali di Legnaro, Pedova, Italy ^b latituto Nazionak di Reica Nucleare, Sezione di Palova, Padeva, kaly ^cistituto Nationale di Fisica Nucleare, Sezione di Milano, Milano, Italy ^d Dipanimento di Fisica dell'Università di Fadova, Fadova, Italy * institut für Kemphysik der Universität zu Köln, Köln, Germany ⁴STFC Baresiary Interviery, Derechary, Wardington WH4 4AD, United Kingdom ⁸ Diparimento di Riska dell'Università di Mileno, Milano, Italy ⁿ IFIC, CSIC - Universitat de València, Spain GANIL, CENDSM-CNRS/IN2P3, Caen, France University of the West of Scotland, Paisley, UK * Institut de Physique Nucléaire d'Orsay, CNRS/INZP3, Université Paris Sud, Orsay, France 1 GSI Helmholtzzentrum für Schwertonenforschung mbH, Darmstadt, Germany ^m Department of Physics, University of Jyvdskylå, Jyvdskylå, Finland " The Newodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland ^o Centre de Spectromètrie Nuclèdre et de Spectromètrie de Masse, ONRS/IN2P3, Université Paris Sud, Oraz ^p Institut für Kernphysik, TU Darmstadt, Darmstadt, Germany ⁹ IPN Lyon, IN2P3-CNRS, Université C Bernard Lyon-1, Villeurbanne, France ¹ DSM/DAPNIA, CEA/Saclay, Saclay, France ¹ letituto Nazionale di Ekica Nucleare, Sezione di Canova, Genova, Valv

¹ Department of Hysics. Faculty of Science and Art, Aksaray University, Aksaroy, Turkey

The AGATA and PRISMA Collaborations

Conceptual design and infrastructure for the sub-array of AGATA at LNL

AGATA

Nuclear instrument and Methods in Region Research A 668 (2022) 26-58

AGATA-Advanced GAmma Tracking Array

The AGATA demonstrator at LNL

The AGATA Demonstrator Array and the PRISMA spectrometer.

A. Stefanini, et al., Nucl. Phys. A 701, 217 (2002)

Lifetime experiments with AGATA+PRISMA via MNT reactions

³Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain (Received 10 September 2010; published 2 Novem)

LNPS interaction

(Received 10 September 2010; published 21

Spokepersons: J.J. Valiente-Dobon, S. Lenzi

Lifetime of the 11/2⁻ states

- ⁶⁴Ni @ 460 MeV (TANDEM+ALPI)
- ²³⁸U target of 1.35 mg.cm⁻² on 4 mg.cm⁻² Nb backing

Shell evolution along the Cu isotopes

Systematic variation of effective single-particle energies due to the tensor interaction T. Otsuka et al. PRL 95, 232502 (2005)

New approach for lifetime: normalization done with the number of ions (PRISMA)

LNPS interaction: shell-model calculations using an enlarged valence space: pf-shell orbitals for protons and $f_{5/2}$, $p_{1/2}$, $p_{3/2}$, $g_{9/2}$ and $d_{5/2}$ orbitals for neutrons.

transition	$B(E2\downarrow) exp(e^{2}fm^{4})$	$B(E2\downarrow) th_2 (e^2 fm^4)$	
$7/2^1 \rightarrow 3/2^-$	45(36)	40.0 (3)	LNL
$7/2^2 \rightarrow 3/2^-$	187(21)	157.1	ISOLDE

Analysis by M. Doncel, E. Sahin

K. Sieja et al., Private Communication.

Spectroscopy via Binary Partner

Binary partner method

Shape transitions in Os isotopes

Spokepersons: V. Modamio, Zs. Podolyak C. Wheldon, W. Korten

ß

Os isotopes studied at stable and RIB

P.D. Bond Phys. Lett. 130B, 167 (1983)

Level scheme built by comparison with ²⁰⁰Pt. A weakly deformed **oblate** shape is proposed consistent with E(4+)/E(2+) and $E(2+_2)/E(2+)$ evolution and TRS calculations.

Zs. Podolyàk et al. PRC79, 31305(R) (2009)

First evidence of ¹⁹⁶Os

⁸²Se + ¹⁹⁸Pt (2mg/cm²) at 426 MeV

Beam and target Doppler corrected spectra using binary kinematics:

BLF: β~10% FWHM: 0.5% TLF: β~3% FWHM: 1.8% Consider energy loss in the target Analysis by P.R. John

AGATA at RIB facilities: GSI/GANIL

AGATA at in-flight RIB

target-array distance (cm)

Conveners: M. Bentley, W. Korten and D. Rudolph

 $\gamma\gamma$ -efficiency : 1 % C. Dominet Pardoret al., NIM (in prep).

AGATA – Prespec experiments

Total: 144 shifts (46 days) + (up to) 90 shifts parasitic commissioning beam time S426 Relativistic M1-Coulex of ⁸⁵ Br ⁸⁶ Kr, 700/800 A.MeV, 24 shifts				
Pietralla, Rainovski et al.	Coulex (Pb/Au)			
S430 The Pygmy Dipole Resonance in ⁶⁴ Fe				
and the properties of neutron skin	⁸⁶ Kr, 700 A.MeV, 21 shifts			
Wieland, Kmiecik et al.	Coulex (Pb/Au)			
S427 Breaking of isospin symmetry in the mass 70 region:				
Study of the T _z =-1 nucleus ⁷⁰ Kr	⁷⁸ Kr, 770 A.MeV,15 shifts			
Sahin, Wadsworth, Weisshaar et al.	Knock-out (Be)			
S433 Coulomb excitation of the band-terminating				
12⁺ yrast trap in ⁵² Fe	⁵⁸ Ni, 500 A. MeV, 15 shifts			
Gadea, Ur et al.	Coulex (Pb/Au)			
S434 Isospin Symmetry Breaking Transition Rates and				
Mirror Energy Differences in Isobaric Multiplets	⁵⁸ Ni, 420 A.MeV, 15 shifts			
Bentley, Recchia et al.	Knock-out (Be) & Coulex (Pb/Au)			
S429 Quadratic Evolution of Collectivity Around ²⁰⁸ Pb	²⁰⁸ Pb, 1000 A.MeV, 18 shifts			
Rudolph, Podolyak et al.	Coulex (Pb/Au)			
S428 Shape evolution in neutron-rich Zr isotopes	²³⁸ U, 750A.MeV, 12 shifts			
Pietri, Doornenbal et al.	Knock-out (Be)			
S431 Proton hole states in ¹³² Sn and N=82 shell structure	e ²³⁸ U, 650A.MeV, 12 shifts			
Boutachkov, Korten et al.	Knock-out (Be) & Coulex (Pb/Au)			

AGATA at GANIL

Any place in the existing GANIL facility but VAMOS remains the most versatile place for AGATA physics cases (*still an open question*) ->S3 ?

•Charged particle array for transfer reaction MUST2/TIARA : (d,p) etc ... program with SIB and RIB

•Charged particle array for prompt tagging : DIAMANT (Electronic Upgrade ?)

•Charged particle array for Recoil Decay Tagging : MUSETT

- Neutron detector : NWALL (Electronic Upgrade ?)
- Spectrometer : VAMOS, SPEG, S3

S?

• Scintillator : BaF2 array, some LaBr3 (which Electronic?)

• Future detector : NEDA (n) , GASPARD (MUST2-like), PARIS (LaBr3)

Summary

- First implementation of AGATA at LNL coupled to PRISMA
- Use of deep inelastic collisions to populate neutron-rich nuclei
- Lifetime experiments:
 - New island of inversion
 - Shell evolution along the Cu isotopes
- Binary partner method:
 - Region of maximum collectivity: Dy
 - Shape transition in Os nuclei
 - Shell model states south-east of ²⁰⁸Pb
- Complementarity of stable beam facilities with RIB facilities
- Bright future is awaiting for gamma sectroscopy far from stability with AGATA at RIB facilities as well as stable beam facilities

The PRISMA spectrometer

Large-acceptance magnetic spectrometerc

- Formed by 1 Q, 1 D and detectors (MCP,MWPPAC, IC) to track the ions.
- $\Delta\Omega$ = 80 msr, $\Delta Z/Z \approx$ 1/60, $\Delta A/A \approx$ 1/190, Bp = 1.2 T.m
- Identifies nuclei produced in the reaction (A,Z,β) event by event

- A. Stefanini, et al., Nucl. Phys. A 701, 217 (2002)
- S. Beghini et al., NIM A551, 364 (2005)
- G. Montagnoli et al., NIM A547, 455 (2005)

Island of inversion ESPE

FIG. 1. (Color online) Neutron effective single-particle energies obtained with (a) the LNPS interaction at N = 40 and (b) with the SDPF-U interaction at N = 20.

The similarities

are striking. In the N = 20 case, a reduction of the neutron

0*d*3/2-0*f*7/2 gap takes place when protons are removed from

the proton 0d5/2 orbital. This feature,

accompanied by the

proximity of the quadrupole partner neutron orbitals 0*f*7/2 and

1*p*3/2, is responsible for the formation of the *island of inversion*

at N = 20. At N = 40 one observes the same behavior, but

for the neutron 0*f*5/2-0*g*9/2 gap when going down from 68Ni

and the closeness of the quadrupole partners 0g9/2-1d5/2.

ESPE towards ⁷⁸Ni

Nickel chain

⁵⁶Ni: well doubly-magic, gap
6.5MeV
⁶⁸Ni mixture of magic and superfluid. O.Sorlin PRL88 092501 (2002)
⁷⁸Ni is supposes to be doublymagic with a proton gap 5.0 MeV and neutron 4.6 MeV

The rigidity of the gap in ⁷⁸Ni is also an important issue in astrophysics because it is a waiting point in the r-process.

K. Sieja et al., PRC81, 061303 (2010)

AGATA counting rate

Test experiment to optimize the degrader

AGATA is not shielded and the large degrader thicknesses gave large counting rates 50-70 kHz per crystal

Degrader	Thickness	Nº atoms	Energy loss
Mg	4 mg/cm ²	10x10 ¹⁹	~95MeV
Nb	4 mg/cm ²	2.5x10 ¹⁹	~65MeV
Та	4 mg/cm ²	1.3x10 ¹⁹	~48MeV

New approach for lifetime determination

76Ge + 238U @ 577 MeV

The normalization is done considering the number of ions detected on PRISMA for each peak independently. This approach is essential for low statistic channels. Verified in ⁷⁶Ge and ⁷²Zn

Figure 4.42: Fit of the $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ transitions at 847 keV and 653 keV, respectively. a) When the standard ratio for the RDES method is applied and b) when only the unshifted peak is considered, normalized to the number of ions detected in PRISMA.

Table 4.22: Half life ($T_{1/2}$), lifetime (τ) and reduced transition probability ($B(E2\downarrow)$) for the 2⁺ \rightarrow 0⁺ ⁷²Zn transition at 653 keV.

$E = 653 \text{ keV } 2^+ \rightarrow 0^+$					
	Method	$T_{1/2}$ (ps)	τ (ps)	$B(E2\downarrow)(e^{2}fm^{4})$	
	reference	13.7(17)	19.8(24)	348(42)	
	conventional	12.3(14)	17.1(19)	402(45)	
	unshifted	11.8(18)	17.0(19)	405(45)	

Experimental details

⁸²Se + ¹⁹⁸Pt (2mg/cm²) at 426 MeV

Beam and target Doppler corrected spectra using binary kinematics:

BLF: β~10% FWHM: 0.5%

TLF: β~3% FWHM: 1.8%

Consider energy loss in the target at the various angles

Analysis by P.R. John

Dy nuclei – large valence particles

Spokepersons: J. Nyberg, P.H. Regan, J. Simpson

Study the structure of yrast bands in the neutron-rich rare-earth nuclei $^{170}\text{Dy}_{106}$, located in the region of maximum collectivity, and search for high-K isomers in this region. ^{170}Dy is the most promising candidate for an SU(3) prolate rotor in the IBM. Identification of the γ band is required.

Neglecting any potential subshell closures, the nucleus with the largest number of valence particles with A < 208 is $^{170}Dy_{104}$

Experimental details

⁸⁶Se + ¹⁷⁰Er @ 460 MeV CLARA+PRISMA

PIIYSICAL REVIEW C 81, 034310 (2010)

Spectroscopy of neutron-rich 168,170 Dy: Yrast band evolution close to the $N_{p}N_{a}$ valence maximum

P.-A. Söderström,¹ J. Nyberg,¹ P. H. Regan,² A. Algora,³ G. de Angelis,⁴ S. F. Ashley,² S. Aydin,⁵ D. Bazzacco,⁵
R. J. Casperson,⁶ W. N. Catford,² J. Cederkäll,^{7,8} R. Chapman,⁹ L. Corradi,⁴ C. Fahlander,⁸ E. Farnea,⁵ E. Fioretto,⁴
S. J. Freeman,¹⁰ A. Gadea,^{3,4} W. Gelletly,² A. Gottardo,⁴ E. Grodner,⁴ C. Y. He,⁴ G. A. Jones,² K. Keyes,⁹ M. Labiche,⁹
X. Liang,⁹ Z. Liu,² S. Lunardi,⁵ N. Märginean,^{4,11} P. Mason,⁵ R. Menegazzo,⁵ D. Mengoni,⁵ G. Montagnoli,⁵ D. Napoli,⁴
J. Ollier,¹² S. Pietri,² Zs. Podolyák,² G. Pollarolo,¹³ F. Recchia,⁴ E. Sahlan,⁴ F. Scarlassara,⁵ R. Silvestri,⁴ J. F. Smith,⁹
K.-M. Spohr,⁹ S. J. Steer,² A. M. Stefanini,⁴ S. Szilner,¹⁴ N. J. Thompson,² G. M. Tveten,^{7,15} C. A. Ur,⁵ J. J. Valiente-Dobón,
V. Werner,⁶ S. J. Williams,² F. R. Xu,¹⁶ and J. Y. Zhu¹⁶

FIG. 3. Spectrum of γ -ray energies from targetlike fragments gated on the beamlike fragments ⁸⁴Kr (top) and on beamlike fragments ⁸⁴Kr plus a short time of flight (bottom). The transitions identified as the rotational band in ¹⁶⁸Dy are marked with solid lines.

In order to try to identify the gamma rays from the TLF one needs to make gates in the Q value to minimise the neutron n evaporation.

AGATA+PRISMA experiment done with a ¹³⁶Xe beam that has a larger cross section respect to ⁸²Se \rightarrow Analysis by: A. Gengelbach, P. Hampson

Vicinity of ²⁰⁸Pb

Spokepersons: Zs. Podolyak

South and south-east of ²⁰⁸Pb is lacking in information: ²⁰⁸TI & ^{206,208}Hg

Obtain information on shell model states of nuclei along the N=126 line, and also where N>126 & Z<82 $\,$

In the region

PHYSICAL REVIEW C 80, 061302(R) (2009)

Nuclear structure "southeast" of ²⁰⁸Pb: Isomeric states in ²⁰⁸Hg and ²⁰⁹Tl

N. Al-Dahan,^{1,2} Zs. Podolyák,^{1,*} P. H. Regan,¹ M. Górska,³ H. Grawe,³ K. H. Maier,⁴ J. Gerl,³ S. B. Pietri,³ H. J. Wollersheim,³ N. Alkhomashi,¹ A. Y. Deo,¹ A. M. Denis Bacelar,⁵ G. Farrelly,¹ S. J. Steer,¹ A. M. Bruce,⁵ P. Boutachkov,³ C. Domingo-Pardo,³ A. Algora,^{6,7} J. Benlliure,⁸ A. Bracco,⁹ E. Calore,¹⁰ E. Casarejos,⁸ I. J. Cullen,¹ P. Detistov,¹¹ Zs. Dombrádi,⁷ M. Doncel,¹² F. Farinon,³ W. Gelletly,¹ H. Geissel,³ N. Goel,³ J. Grebosz,⁴ R. Hoischen,^{3,13} I. Kojouharov,³ N. Kurz,³ S. Lalkovski,⁵ S. Lconi,¹⁴ F. Molina,⁶ D. Montanari,⁹ A. I. Morales,⁸ A. Musumarra,^{3,15} D. R. Napoli,¹⁰ R. Nicolini,⁹ C. Nociforo,³ A. Prochazka,³ W. Prokopowicz,³ B. Rubio,⁶ D. Rudolph,^{3,13} H. Schaffner,³ P. Strmen,¹⁶ I. Szarka,¹⁶ T. Swan,¹ J. S. Thomas,¹ J. J. Valiente-Dobón,¹⁰ S. Verma,⁸ P. M. Walker,¹ and H. Weick³

Experiemnts performed in RIB in fligh (FRS) The specroscopic information comes from the existance of an isomer → Stable facilities DIC yrast bands

In nearby semimagic nuclei one can study in detail effects of the renormalized effective NN interaction like higher other effective 3-body forces. A.Gottardo et al., PR (submitted)

Experimental details ¹³⁶Xe + ²⁰⁸Pb (1mg/cm²) at 940MeV

Lifetimes along the N=20

Spokepersons: F. Haas, R. Chapman

$1(h/2\pi)w$ excitations in the N=20

- Unified description of 0hw and 1hw states
- Prediction of lifetimes around N~20 in the range accessible by RDDS
 PSDPF: M. Bouhelal, F. Haas, E. Caurier, F. Nowacki, A. Bouldjedri, Nuclear Physics A 864, 113 (2011)
 USD: B. A. Brown, W. A. Richter, Phys. Rev. C 74, 034315 (2006).

Experimental details

Testing 1hw excitations

- New full 1hw Shell Model interaction for *sd*-nuclei
- Unified description of 0hw and 1hw states
- Good overall agreement with experimental data on excitation energies
- Need of further experimental data at the border of the shell (electromagnetic transitions, ...)
- Prediction of lifetimes around N~20 in the range accessible by recoil shift method

