Stepping stones across the dripline

EURORIB 2012 20120524, Abano Terme

H. Simon • GSI Darmstadt

Menu

- 1. Tools
- 2. Extremely neutron rich systems: ^{12,13}Li
 - remnants of halo nuclei
- 3. The puzzling structure of ¹⁴Be via ¹³Be
- 4. Steps towards FAIR
- 5. Summary

At the boundaries: Three body correlations

Nuclear structure for extreme N/Z ratios

Mean-field modifications

- surface composed of diffuse neutron matter
- derivative of mean field potential weaker and spin-orbit interaction reduced

Nucleon-nucleon interaction

• σσττ interaction :

coupling of p-n spin-orbit partners in partly occupied orbits

O: missing $\pi d_{5/2}$ do not bind $\nu d_{3/2} \rightarrow N=16$ T.Otsuka et al., PRL87 (2001) 082502 PRL95 (2005) 232502 (tensor)

Repulsive 3N force

T.Otsuka et al., PRL105 (2010) 032501

Exotic structure across the dripline

P.G. Hansen, Nature 328 (1987) 476

Clean & unbiased production

5

Boundary conditions for spectroscopic studies

Experimental Setup (kinematically complete)

Intermediate system tells g.s. properties (knockout)

Transverse momentum Distribution of ¹⁰Li (missing momentum)

Decomposition and position of s and p confirmed!

similar result with energy dependent angular correlations

Y. Aksyutina, H. Johansson et al., PLB666 (2008) 430

Description of the three body continuum

- Reduction (CMS, E^{*}, rot. inv) 9 variables \rightarrow 2 variables (ϵ, θ)
 - ε is the fractional energy for a subsystem (e.g. $ε = E_{nn}/E_{nnf}$)
 - θ is the angle between the relative momenta (e.g. p_{nn}, p_{f-nn})
- Three body correlation function (expansion in hyperspherical harm.):

Complex coefficients C depend on quantum numbers α={K,L,S,Ix,Iy}

L.V. Chulkov, H.S., I.Thompson, et al., NPA759 (2005) 23 M.Meister, L.V. Chulkov, H.S., et al., PRL91 (2003) 16504

The ¹³Be puzzle

Virtual state dominant

 $a_s = -3.2(1.0)$ fm (antibound state) $E_r = 0.41(8)$ MeV, $\Gamma = 0.4(5)$ MeV $E_r = 3.04$ MeV, $\Gamma = 0.4$ MeV $E_r = 2.0$ MeV, $\Gamma = 0.3$ MeV H.S. et al., Nucl.Phys. A791, 267 (2007)

Narrow p-wave resonance

 $a_s = -3.4(6)$ fm (antibound state) $E_r = 0.51(1)$ MeV, $\Gamma = 0.45(3)$ MeV $E_r = 2.39(5)$ MeV, $\Gamma = 2.4(2)$ MeV Y.Kondo et al., Phys.Lett. B 690, 245 (2010)

s-wave resonance

 E_r =0.7(2) MeV, Γ =1.7(2) MeV E_r =2.4(2) MeV, Γ =0.6(3) MeV G.Randisi, PhD Thesis 2012, see also J.L.Lecouey, Few-Body Systems 34, 21 (2004). Recent Data: Similar spectra quite different interpretations !

14R

13Be

• H.S. et al., Nucl.Phys. A791, 267 (2007): Why contribution of an s-wave dominates in the relative energy spectrum when ${}^{12}Be+n \ \ell=0$ interaction is so weak?

• Y.Kondo et al., Phys.Lett. B 690, 245 (2010): With the assumption of a narrow presonance, the low-energy region can be fitted only assuming that the d-resonance is extremely broad. The width of d-resonance is so broad ($\Gamma \approx 5/2 \Gamma_{s.p.}$) that this fact itself can be the subject of separate publications and further investigations (see e.g. D.Overway et al , Nucl.Phys. A366, 299 (1981)).

J.L.Lecouey, Few-Body Systems 34, 21 (2004); Y.G.Randisi, PhD Thesis 2012:
 Why should there be a s-wave resonace with no angular momentum barrier, or how sensitive is the shape determination?

The momentum transfer in the knockout of tightly bound proton can essentially change the spectrum (see H.Esbensen et al., Phys.Rev. C57, 1366 (1998)).

14F

¹³Be

16

14.0

Eexc(MeV)

Momentum profile

13Be

- d ghost at threshold
- s strength above
- then p,d states & ghosts

Stepping stones ...

Experimental challenge: Multineutron detection

coincident two/four neutron + charged fragment detection

- two neutron detection efficiency
- two neutron reconstruction efficieny
- detector response

@ low relative energy !

three/five body correlations

LAND 2n identification efficiency at low energy

Nucl. Instr. Meth. A314 (1992) 136

- (high) 2n detection efficiency (98%)
- tracking algorithm
 → 2n identification efficiency
- identify 2n events (~ 20 %) even at zero relative energy

Experimental evidences...

Going for a different detector concept \rightarrow R³B@FAIR

Beyond the dripline: ⁷H (just) missing mass spectra

Incredients for the ⁷H case

¹¹Li - $\alpha \rightarrow$ ⁷H + 2n + 2n ⁸He - p \rightarrow ⁷H + 2n + 2n

3 bdy corr.

Summary

- Extreme nuclear matter states cleanly produced and analysed
- Largest neutron/proton asymmetries
- ^{13,12}Li related to ^{14,13}Be properties
- LAND multi-neutron response low energy part of Erel for f + n + n studied and characterized

(¹¹Li, ²⁶O)

- Neuland TDR (R³B@FAIR) fully active detector consistent simulation
- \rightarrow f + n + n + n + n (e.g. ⁷H) in reach

The NeuLAND working group within the R³B collaboration

Convener:	Konstanze Boretzky, GSI Darmstadt, Germany
Deputy:	Ushasi Datta Pramanik, SINP Kolkata, India
GSI Darmstadt:	D. Bertini, K. Boretzky, J. Hehner, M. Heil, G. Ickert, Y. Leifels, D. Rossi, H. Simon
HZDR Dresden-Ross	endorf: D. Bemmerer, T. Cowan, Z. Elekes, M. Kempe, M. Sobiella, D. Stach, A. Wagner,
	J. Wüstenfeld, D. Yakorev
TU Darmstadt:	T. Aumann, C. Caesar, D. Gonzalez Diaz, A. Ignatov, D. Kresan, H. Scheit
TU Dresden:	T. Cowan, M. R oder, K. Zuber
U Cologne:	J. Endres, A. Hennig, V. Maroussov, A. Zilges
U Frankfurt:	R. Reifarth, M. Volknandt
SINP Kolkata:	B. Agrawal, P. Basu, P. Bhattacharya, S. Bhattacharya, S. Chakraborty, S. Chatterjee,
	U. Datta Pramanik, P. Kumar Das, J. Panja, A. Rahaman, J. Ray, T. Sinha
LIP Coimbra:	A. Blanco, P. Fonte, L. Lopez
U Lisbon:	D. Galaviz Redondo, J. Machado, P. Teubig
ISS Bucharest:	M. Cherciu, M. Ciobanu, M. Haiduc, M. Potlog, E. Stan
Kurchatov Institute Moscow: L. Chulkov	
PNPI St. Petersburg:	G.D. Alkhazov, V.A. Andreev, A.A. Fetisov, V.L. Golovtsov, E.A. Ivanov, A.G. Krivshich,
	L.N. Uvarov, V.V. Vikhrov, S.S. Volkov, A.A. Zhdanov
Chalmers Univ. of Technology: A. Heinz	

The Halo Collaboration

Y. Aksyutina, T. Aumann, H. Álvarez-Pol, T. LeBleis, E. Benjamim, J. Benlliure, K. Boretzky, M.J.G. Borge, C. Caesar, M.Caamaño, E. Casarejos, L.V. Chulkov, D. Cortina-Gil, K. Epinger, Th. W. Elze, H. Emling, C. Forssén, H. Geissel, R. Gernhäuser, M. Hellström, J. Holeczek, K.L. Jones, H. Johansson, B. Jonson, J.V. Kratz, R. Krücken, R. Kulessa, C.Langer, M. Lantz, Y. Leifels, A. Lindahl, K. Mahata, M. Meister, P. Maierbeck, K. Markenroth, G. Münzenberg, T. Nilsson, C. Nociforo, G. Nyman, R. Palit, M. Pantea, S. Paschalis, D.Pérez, M. Pfützner, V. Pribora, A. Prochazka, R. Reifarth, A. Richter, K. Riisager, C. Rodríguez, C. Scheidenberger, G. Schrieder, H. Simon, J. Stroth, K. Sümmerer, O. Tengblad, H. Weick, and M.V. Zhukov.

GSI, Darmstadt, Germany; Instito Estructura de la Materia, Madrid, Spain Kurchatov Institute, Moscow, Russia; Johann-Wolfgang-Goethe-Univ., Frankfurt, Germany; Chalmers Tekniska Högskola / Göteborgs Universitet, Göteborg, Sweden; Johannes-Gutenberg-Universität, Mainz, Germany; Universytet Jagiellonski, Kraków, Poland; University Santiago de Compostela, Spain; Technische Universität, Darmstadt, Germany; Technische Universität, München, Germany; CERN, Genève, Switzerland; Aarhus Universitet, Aarhus, Denmark

Stepping stones ...

Open Quantum Systems

Base properties of clustered systems and halo nuclei

Halo effective field theory Nuclear systems close to breakup threshold:

- Influenced by correlations and couplings to the continuum
- Clusterization; dilute matter densities
- ▶ Melting of shell structure
- Ground-states embedded in the continuum

Interface between clustering and continuum in structure and reactions

Ab initio reaction theory

Cluster models

...open quantum systems

Gamow/continuum shell model Bound-state techniques for scattering properties

Director of the ECT*: Professor Achim Richter (ECT*

The ECT* is sponsored by the "Fondazione Bruno Kessler" in collaboration with the "Assessorato alla Cultura" (Provincia Autonoma di Trento), funding agencies of EU Member and Associated States and has the support of the Department of Physics of the University of Trento.

> For local organization please contact: Ines Campo - ECT* Secretariat - Villa Tambosi - Strada delle Tabarelle 286 - 38123 Villazano Trento - Italy Tel.: (+39-0461) 314-721 Fax: (+39-0461) 935007, E-mail: ect@ect.it or visit http://www.ect.it

LAND response at low energy

Consequences for a NewLAND detector

http://fairroot.gsi.de

Clean handle on reaction mechanism: → Si tracker & Crystal ball or CALIFA

Direct observation of kinematical correlations →

(i) (Cluster) spectroscopic factors (p,2p),(p,pn),(p,px) inv. kinematics

 (ii) clean production of ⁴H, ⁷H,... via α knockout !

H.S. et al. Phys. Rev. Lett. **83** (1999) 496 Nucl. Phys. **A 791** (2007) 267

→Confirmed eg @ GANIL ¹¹Be, ^{14,15}B → 9 Li+n H. Al Falou et al. Niigata 2010

Stepping stones ...

Correlation data, matter radii, B(E1), cross sections binding energy 369.15(65) keV charge radius 2.467(37) fm R. Sanchez et al., PRL96 (2006) 033002 quadrupole moment 33.3 (5) mb R. Neugart et al., PRL101(2008)132502

Phenomenological wave function N.B. Schulgina, B. Jonson, M.V.Zhukov Nucl. Phys. **A825**(2009)175

10Li ¹¹Li

Background phase shift dl= - atan Fl/Gl = - rho taken into account -> Esbensen k for initial

L.V. Chulkov

Consistent description of all data sets

- s wave fit
- p,d fixed from experiment

Bertsch, Hencken, Esbensen, PRC57(1998)1366

L.V. Chulkov

14B

¹³Be

¹⁴B€

Trying to understand ¹⁴Be → ¹³Be is (too) complicated ! ¹³Be ¹⁴Be

Idea: Understand ¹³Be by populating it from ,known' systems and at different energies

Idea: Understand ¹³Be by having it inside a ,known' system i.e. ¹⁴Be*

FIN

Beyond the dripline: ⁵H (just) energy spectra

What next ? Target recoil detection !

Direct observation of kinematical correlations →

(i) (Cluster) spectroscopic factors (p,2p),(p,pn),(p,px) inv. kinematics

 (ii) clean production of ⁴H, ⁷H,... via α knockout !

New Experiments (Aug/Sep 2010) R³B/FAIR precursor: Setup at Cave C

Five physics topics using rare-isotope beams will be studied:

- I. r-process nucleosynthesis
- II. spectroscopy of valence and deeply bound nucleons in exotic nuclei
- III. isospin dependence of nucleon-nucleon correlations
- IV. alpha clustering in exotic nuclei
- V. spectroscopy of unbound nuclei

Run as single experiment by R3B Collaboration:

- same experimental setup for all topics (Cave $C \rightarrow R^{3}B$)
- same settings of FRS for all topics
- Use different reactions (\Rightarrow targets) dependent on topic:
 - heavy-ion induced electromagnetic excitation (Pb target)
 - (p,2p), (p,pn) and (p,p α) quasifree scattering (proton in CH₂ target)
 - one- and two-neutron removal (Carbon in CH2 target)

Maximise efficiency of beam time

Planned experiments of other collaborations in Cave C

IKAR, HYPHI, Asy-EoS, FIRST/SPALADIN

¹¹Li \rightarrow ¹⁰Li: Combined Results

H.S. et al., Phys.Rev.Lett. **83** (1999) 496 Nucl. Phys. **A 791** (2007) 267

→Confirmed eg @ GANIL ¹¹Be, ^{14,15}B → 9 Li+n H. Al Falou et al. Niigata 2010 -30 ⁺¹²₋₃₁ fm; virtual state 0.51(44); 0.54(16) Ε*; Γ 1.49(88); < 2.2 in MeV

(-22.4(4.8) fm / 0.566(14) MeV IH₂ target)
supported by ang. correlations

Unbound Lithium isotopes: ¹²Li

Intruder states e.g. N=7

Exploring Unbound Lithium isotopes

Exotic structure across the dripline: P.G. Hansen, Nature 328 (1987) 476

R. Anne et al., Nucl. Phys. A575(1994)125

ဖွာ

Observation of a Large Reaction Cross Section in the Drip-Line Nucleus ²²C

K. Tanaka,¹ T. Yamaguchi,² T. Suzuki,² T. Ohtsubo,³ M. Fukuda,⁴ D. Nishimura,⁴ M. Takechi,^{4,1} K. Ogata,⁵ A. Ozawa,⁶

T. Izumikawa,⁷ T. Aiba,³ N. Aoi,¹ H. Baba,¹ Y. Hashizume,⁶ K. Inafuku,⁸ N. Iwasa,⁸ K. Kobayashi,² M. Komuro,²

Y. Kondo,⁹ T. Kubo,¹ M. Kurokawa,¹ T. Matsuyama,³ S. Michimasa,^{1,*} T. Motobayashi,¹ T. Nakabayashi,⁹ S. Nakajima,² T. Nakamura,⁹ H. Sakurai,¹ R. Shinoda,² M. Shinohara,⁹ H. Suzuki,^{10,6} E. Takeshita,^{1,†} S. Takeuchi,¹ Y. Togano,¹¹

K. Yamada,¹ T. Yasuno,⁶ and M. Yoshitake²

PRL 104 (2010) 062701

Caveat: Interaction cross sections

Al-Khalili& Tostevin, PRL76 (96) 3903

R(¹¹Li) = 3.53(10) fm

(Tanihata: 3.10(14) fm)

Correlations change interpretation i.e. R extracted from σ_{I}

Shigeyoshi Aoyama, PRL**89** (2002) 052501 possible similarity of ¹⁰He and ¹¹Li g.s.

11

¹⁰He

Comparison ¹¹Li and ¹⁰He via angular correlations

H.T. Johansson, Y. Aksyutina, Nucl. Phys. **A847** (2010) 66 ¹¹Li wave function: N.B. Shulgina et al., Nucl. Phys. A825 (2009) 175