

The observation of a strong E0 component in the 2⁺→2⁺ transition in ¹⁸⁴Hg from the β-decay of laserionized thallium isotopes: a strong signature of shape-coexistence

Elisa Rapisarda

A classical example: ¹⁸⁶Pb

A.N. Andreyev et al., Nature 405(2000)430

 Shape coexistence = proximity of spherical and/or deformed shapes(s) at low energy (E < few MeV)

 \circ ¹⁸⁶Pb: most dramatic examples where the three lowest lying states are

0+ states of three different shapes within less than 700 keV.

Evidence for shape coexistence in systematic energy levels: flat behaviour of the spherical states against parabolic intrusion of the deformed states with a minimum at midshell N = 104.

Shape coexistence

in Hg isotopes

EURORIB 12, 20th -25th May, Padova

Spectroscopy methods

What are the observables ("Shape coexistence in atomic nuclei", K.Heyde and J.Wood, Rev.Mod.Phys., Vol.83, n.4 (2011) 1467

Overview

What is going on the region

- ✤ ¹⁹¹⁻²¹⁸Po
- ✤ ¹⁸²⁻¹⁹⁰Pb
- ✤ 180-182-184-186TI

Coulomb excitation

- ✤ ²⁰⁰Po → Nele Kesteloot: friday
- ✤ ¹⁹²Pb
- ↔ ¹⁸²⁻¹⁸⁴⁻¹⁸⁶⁻¹⁸⁸Hg → P. Butler: thursday
- ✤ ²²⁴Ra

✤ ¹⁸⁴⁻¹⁸⁶⁻¹⁸⁸Hg

- $\square \beta^+$ /EC decay studies
 - decay into even-even ¹⁸⁰⁻¹⁸²⁻¹⁸⁴Hg^[1]
 - β-delayed fission

[1] ¹⁸⁰Hg, J.Elsevier et al., Phys. Rev. C, (2011)

 $\Box \alpha$ decay

✤ ¹⁹⁵Po

✤ ¹⁷⁸⁻¹⁸²TI

β-spectroscopy: Experimental Setup

The structure of ¹⁸⁴TI

Isomeric Beams @ ISOLDE

- technique based on in-source laser spectroscopy
- (Ü. Köster et al., NIM B, 160, 528(2000); L. Weissman et al., PRC65, 024315(2000)).
- > set the laser frequency to select and maximize the production of the isomer of interest.

EURORIB 12, 20th -25th May, Padova

Elisa Rapisarda, KULeuven

Half-life

EURORIB 12, 20th -25th May, Padova

Result I: extensive decay scheme of ¹⁸⁴Hg

Result II: 0⁺₂, 2⁺₃ and level mixing

0_2^+ state: 375 keV

- identified by looking at Si- $\!\gamma$ coincidences
- γ rays coincident with this Si energy: 608 keV

Result II: to be more quantitative $\rightarrow \rho^2(E0)$

Complementary informations are needed ...

ρ²(E0) systematics

EURORIB 12, 20th -25th May, Padova

Systematics of even Hg isotopes

Conclusions & Outlook

• β decay of ^{180,182,184}Tl populating levels in ^{180,182,184}Hg was studied as part of a systematic study

... What we have learned

- Many new low-lying energy states were observed O_2^+ which confirms minimum of prolate band occurs in ¹⁸²Hg
- $2^+ \rightarrow 2^+$ transitions observed with large E0 component
- the largest in ¹⁸⁴Hg.

... Next steps

- More firm ground state spin assignment of TI will follow from a hyperfine interaction study: Laser Spectroscopy
- Coulomb excitation of ¹⁸²⁻¹⁸⁸Hg will complement the known data with the direct measurement of the static quadrupole moment
- Although we have already many different experimental probes at our disposition, we still do not have a full picture of phenomena such as shape coexistence

But new possibilities arise:

- high resolution electron spectroscopy
- multiple Coulomb Excitation
- transfer reactions
- spins, moments and radii measurements in previously hardly accessible regions

EURORIB 12, 20th -25th May, Padova

Collaboration

- IKS Leuven, Belgium I. Darby, J. Dirichen, J. Elseviers, N. Bree, M. Huyse, D. Pawels, D. Radulov, P. Van de Bergh, P. Van Duppen
- University of West Scotland, UK A.N. Andreyev, V. Liberati, Joe
- Comenius University, Bratislava, Slovakia M. Venhart, S. Antalic, M. Veselsky, Zdenka
- University of Manchester, UK I. Tsekhanovich
- University of Ioannina, Greece N. Patronis
- Institute Laue Langevin, Grenoble, France U. Köster
- CERN, Geneva, Switzerland T. E. Cocolios, V. Fedoseev, B. A. Marsh, M. Seliverstov, Anatoly, Pavel

and the ISOLDE collaboration

199192

Acknowledgement: Marie Curie Intra-European Fellowship of the EC's FP7

Simple two-states model

Simple two-level models consist of two configurations corresponding to, in general, two shapes with different quadrupole equilibrium values in the appropriate deformation (β) space.

$$\rho^{2}(EO) = \alpha^{2} \beta^{2} \Delta \langle r^{2} \rangle^{2} Z^{2}/R^{4}$$

Εl

Coulomb Excitation of 182,184, 186,188Hg

Complement to each other!

The cross section for exciting the 2^+ state DOES NOT only depend on its reduced transition probability B(E2: $0^+ \rightarrow 2^+$), but also on the diagonal matrix element $<2^+||M(E2)||2^+>$.

Obtain sensitivity on the diagonal matrix element of the first excited state by scanning the center of mass range!

Coulomb Excitation of 182,184, 186,188Hg

Physical Motivation

Physical Motivation

Coulomb excitation: the transitions observed reveal information on:

• Mixing between the different bands (transitional matrix elements)

Information on the deformation (quadrupole moments)
 EURORIB 12, 20th -25th May, Padova

B(E2) = 19500±4500 e²fm⁴ N. Rud et al, PRL 31, 1421, 1973 + life time measurements

The detected γ yields of the photo peaks can be used to extract:

- transitional matrix elements (B(E2) values)
- diagonal matrix elements (quadrupole moments)

This is done by the program GOSIA by fitting the matrix elements to produce the obtained γ yields by a χ^2 minimization.

(T. Czosnyka et al, GOSIA2)

Normalized mean-square radii

Since the B(E2) value is known, the sign and magnitude of the quadrupole moment of the 2^+ state can be measured by calculating the excitation cross section out of the intensity of the detected γ photo peak of the $2^+->0^+$ transition.

EURORIB 12, 20th -25th May, Padova

¹⁸²Hg

In beam γ -ray spectroscopy ^[1]:

Intruders

EURORIB 12, 20th -25th May, Padova

Reorientation in Coulomb Excitation

✓ Coulomb excitation excites low-lying collective bands with cross sections that are a direct measurement of the E λ matrix elements involved in the excitation.

- ✓ Collectivity and deformation can be inferred.
- \checkmark Reorientation effects can provide the sign of Q

EURORIB 12, 20th -25th May, Padova

Systematics of even Hg isotopes

- O_2^+ and 2_2^+ confirm minimum of prolate band in ¹⁸²Hg
- 2_3^+ (bandhead of γ vibrational band of prolate band follows the systematics of ¹⁸²⁻¹⁸⁶Hg)
- Configuration mixing

γγ and Si-γ coincidences

Silicon Spectrum Time Gated: Surface Ionized data

Result:0⁺₂, 2⁺₃ and level mixing

0_2^+ state: 335 keV

- identified by looking at $\text{Si-}\gamma$ coincidences
- already placed at 328 (12) keV from $\alpha\text{-decay}$ of ^{186}Pb $^{[1]}$
- γ rays coincident with this Si energy: 639 keV

[1] J.Wauters et al., Phys. Rev. C, 50 (1994) 2768

 2^+_3 state: 973 keV

- based on unambiguous coincidence relations
- band-head of $\boldsymbol{\gamma}$ vibrational band on top of prolate band

- $2_3^+ \longrightarrow 2_2^+$ (621.9 keV): no E0 component

4⁺₂ state: 1124 keV

- suggested in [2] but the 772.6 transition could not be seen

- from the energy systematics of the even-even Hg

isotopes is a good candidate for 4⁺ member of the oblate band

[2] M. Scheck et al., Phys. Rev. C, 81 (2010) 014319

 $2_2^+ \rightarrow 2^+$ transition: 197 keV

- important E0 component (ICC = $\frac{I_{CE}}{I_{CE}}$ = 4.2 (8))
- the two levels are mixed;
- the two levels have different deformation

Evidence for shape coexistence: transitions with E0 components are a model-independent signature of the mixing of configurations with different mean-square radii

Result II:0⁺₂,2⁺₃ and level mixing

0_2^+ state: 375 keV

- identified by looking at Si- γ coincidences
- γ rays coincident with this Si energy: 608 keV

2⁺₂ state: 983.5 keV

- based on unambiguous coincidence relations

- band-head of γ vibrational band on top of prolate band

 $2_2^+ \longrightarrow 2^+$ transition: 168.5 keV - important E0 component (ICC = $\frac{I_{CE}}{I_{ex}}$ = 23 (5))

Evidence for shape coexistence: transitions with E0 components are a model-independent signature of the mixing of configurations with different mean-square radii

