European Radioactive Ion Beam Conference 2012

Abano Terme (PD) Italy

Dynamical Dipole and EOS in N/Z asymmetric fusion reactions with stable and unstable beams

Agnese Giaz INFN Milano – Università degli Studi Milano

Dynamical Dipole in N/Z Asymmetric Reactions

In a fusion reaction, if the colliding nuclei have a different N/Z ratio, a charge equilibration process takes place. The related neutron-proton motion has the features of a collective oscillation and it is associated to a γ emission, the so called **Dynamical Dipole (DD)** emission.

Physical Motivation

Agnese Giaz

0

5

10

D(fm)

May, 25th 2012 - EURORIB '12

20

25

model

Physical Motivation

DD dependence on Beam Energy

The existing experimental data are still rather scarce. Some systematic exists in A=132 mass region.

4.0x10 3.5x10⁻³ Ar+Zr exp Ar+Zr asy-STIFF EOS 3.0x10⁻² Ar+Zr asy-SOFT EOS S+Mo asy-STIFF EOS 2.5×10^{-1} S+Mo asy-SOFT EOS Μγ

8

12

Elab (MeV/nucleon)

10

D. Pierroutsakou et al., PRC, 80, 024612 (2009)

- **Refine theoretical calculations**
- More exclusive experiment

My work: DD dependence on beam energy per nucleon in the ¹⁶O+¹¹⁶Sn system.

Agnese Giaz

 2.0×10^{-3}

 1.5×10^{-3}

 1.0×10^{-3}

5.0x10⁻⁴

0.0

4

16

14

Experimental Set Up

- Garfield for light charge particle (LCP)
- Phoswich for evaporation residues
- Hector for high energy γ -rays

• Helena as time reference and for preequilibrium neutrons

Dynamical Dipole γ **Emission**

The **DD γ** emission and the **GDR** have the same dipolar nature and the same energy.

 $N_p/Z_p = N_t/Z_t$ (⁶⁴Ni+⁶⁸Zn) \longrightarrow Only GDR $N_p/Z_p \neq N_t/Z_t$ (¹⁶O+¹¹⁶Sn) \longrightarrow DD + GDR The experimental signature of pre-equilibrium emission is an **excess of counts** in energy range of **10-20MeV** with respect to the statistical decay.

DD excess of counts (between 10 and 22 MeV) at 12, 8.1 and 15.6MeV/u

Dynamical Dipole γ Emission

Angular Distribution

Agnese Giaz

May, 25th 2012 – EURORIB '12

BNV (Bolzman Nordheim Vlasov) Model

V. Baran et al. PRL, 87 (2001) 18

Developed in LNS (Catania)

BNV model statistical fluctuations

A BNV calculation analyze one event .

One event mimics one fusion reaction with:

- a fixed impact factor
- beam energy
- projectile and target

A BNV calculation produce for one event:

- the dipole moment evolution with time
- ➢ the density evolution with time
- the conjugated of dipole moment evolution with time

As each fusion can be different from the others, it is necessary to **quantify the fluctuations** which are intrinsic in the model. Namely, it is important to check on an event by event basis how the DD γ -rays yield change for fixed parameters.

We produce 50 fusion events

average yield - standard error is about 4%

Note that experimentally we have measured millions of fusion events

Agnese Giaz

May, 25th 2012 – EURORIB '12

BNV: preliminary results ¹⁶O + ¹¹⁶Sn

- Fusion is expected for impact factor between o-7 fm. Nuclei's center of mass distance at contact is 8.9fm
- There is a clear dependence of γ multiplicity with the impact factor.
- Mγ decrease with impact factor (more significant at small value of E_{beam}).
- The differences between Asy-Stiff and Asy-Soft are larger at small value of b

BNV: preliminary results ¹⁶O + ¹¹⁶Sn

section is maximum at large impact factor (low DD γ -yield) and viceversa.

Comparison between Results and Theory

Results for two different entrance channels to obtain the same compound.

Absolute yield expected to be different because D(o)=20.6-18.2 fm (left) and D(o)=8.6 fm (right).

Pierroutsakou et al.: rise and fall behavior

Our data: rise and ...

The comparison of data with theoretical predictions of this multiplicity shows that the rise and fall behavior isn't predicted from theory.

BNV reaction: ¹³²Sn+⁵⁸Ni

Beam energy: 12MeV/UThe dipole moment :D(o) = 45.4 fm (in $^{16}O + ^{116}Sn D(o) = 8.6$ fm)

The M γ for ¹³²Sn+⁵⁸Ni is one order of magnitude larger than the M γ for ¹⁶O +¹¹⁶Sn. Also in this case there is a clear dependence of γ multiplicity with the impact factor.

- Mγ decreases with impact factor
- The differences between Asy-Stiff and Asy-Soft are larger at small value of b

Conclusions

- We have measured the DD γ-ray yield (¹⁶O+¹¹⁶Sn)
 - There is a 46% increase going from 8 MeV/u to 12 MeV/u
 - The yield moves from 8.04 10⁻⁴ ± 1.51 10⁻⁴ for 12 MeV/u to 6.28 10⁻⁴ ± 3.07 10⁻⁴ for 15 MeV/u
- We have measured the **angular distribution**
 - We have observed a quenching of 0.36 relative to a perfect dipole
- Theoretical calculation from **BNV-model**.
 - The rise trend is not followed (same problem present in D. Pierroutsakou et al., PRC, 80, 024612 (2009) and in A. Corsi et al, PLB,679, (2009), 197)
- Sensitivity to EOS at small b using stable beams
 - Some sensitivity to EOS (¹⁶O+¹¹⁶Sn)
- Large DD signal and large EOS sensitivity using exotic beams
 - Yield 10 times larger (¹³²Sn+⁵⁸Ni)
 - Eos sensitivity in the yield (¹³²Sn+⁵⁸Ni)

Garfield Hector Collaboration

<u>A.Giaz</u>¹, A.Corsi¹, F.Camera¹, S.Barlini⁶, V.L.Kravchuk³, R.Alba⁸, P.Bednarczyk⁴, A.Bracco¹, G.Baiocco⁵, L.Bardelli⁶, G.Benzoni², M.Bini⁶, N.Blasi², S. Brambilla², M.Bruno⁵, S.Carboni⁶, G.Casini⁶, M.Ciemala⁴, M.Cinausero³, M.Chiari⁶, M.Colonna⁹, F.C.L. Crespi¹, M.D'Agostino⁵, M.Degerlier³, M.Di Toro⁹, F.Gramegna³, M.Kmiecik⁴, S.Leoni¹, C.Maiolino⁸, A.Maj⁴, T.Marchi³, K.Mazurek⁴, W. Meczynski⁴, B.Million², D.Montanari¹, L.Morelli⁵, A.Nannini⁶, R.Nicolini¹, G.Pasquali⁶, S.Piantelli⁶, A.Ordine⁷, G.Poggi⁶, V.Rizzi³, C.Rizzo⁹, D.Santonocito⁸, V.Vandone¹, G.Vannini⁵, O.Wieland²

¹Università di Milano and INFN sezione di Milano, Italy. ²INFN sezione di Milano, Italy. ³INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy. ⁴The Henryk Niewodniczański Institute of Nuclear Physics, Krakow, Poland. ⁵Università di Bologna and INFN sezione di Bologna, Bologna, Italy. ⁶Università di Firenze and INFN sezione di Firenze, Firenze, Italy. ⁷INFN sezione di Napoli, Napoli, Italy. ⁸INFN, Laboratori Nazionali del Sud, Catania, Italy. ⁹Università di Catania and INFN, Laboratori Nazionali del Sud, Catania, Italy.

Thank you for the attention

May, 25th 2012 – EURORIB '12