

Radioactive Beams at FAIR - the NUSTAR programme <u>NUclear STructure, Astrophysics and Reactions</u>

Thomas Nilsson Chalmers University of Technology, Sweden NUSTAR Board of Representatives/Board of FAIR Collaborations

> EURORIB'12 Abano Terme May 20-25, 2012

The phase diagram of strongly interacting matter

+ PANDA - Hadron Spectroscopy

Spectroscopy with antiprotons

- $p\bar{p}$ machine allows $\Delta E \sim 100$ keV vs. $\Delta E \sim 10$ MeV in e^+e^-
- \rightarrow obtain m and $\[\]$ with high precision
- e^+e^- directly produces only $J^{PC} = 1^{--}(\gamma)$
- pp accesses all states

Charm spectroscopy

- Charmonium: Positronium of QCD
- Charm hybrids
 - C-states narrow, understood
 - Little interference between CC
 G and CC-states
 - Mass 4–4.5 GeV, cc g narrow,
 - ~ σ (p $\bar{p} \rightarrow c \bar{c}$)
- Charm meson spectroscopy

PANDA Physics

+ Extending the nuclear chart@FAIR

Panda

- Nucleon structure
- Hypernuclei strangeness dimension
- **•** • •

NUSTAR

- Radioactive beams
 - Reactions
 - Decay studies

- Hypernuclear physics
- Charm in nuclear matter

Modularised Start Version

Günther Rosner

Civil Construction

Central Topics for NUSTAR at FAIR

- Halos, Open Quantum Systems, Few Body Correlations
- Changing shell structure far away from stability
- Skins, new collective modes, nuclear matter, neutron stars
- Phases and symmetries of the nuclear many body system
- Origin of the elements
- → unified theory (ab-initio, density functional, shell model)

r-process path

•Similar to most RIB projects •Uniqueness wrt ISOL: •Chemical blindness Shortest half-lifes – isomers •Uniqueness wrt other in-flight: •High energy •Storage rings

The chart of nuclei – a theoretical perspective

EURORIB'12 - Abano Terme May 20-25, 2012

Bridges?

EURORIB'12 - Abano Terme May 20-25, 2012

Neutron halos, skins – collective modes

Drastic Changes in Shell Structure far from stability

Nuclear Astrophysics at FAIR

Radioactive beams - production and separation

FRS@GSI B ρ - ΔE – B ρ separation Method

Production of exotic nuclei at relativistic energies

EURORIB'12 - Abano Terme May 20-25, 2012

Production of exotic nuclei at relativistic energies

EURORIB'12 - Abano Terme May 20-25, 2012

The Super-FRS

Super-FRS - Technical Challenges

Facility for Antiproton and Ion Research

Super-FRS – radioactive beams at FAIR

NUclear STructure, Astrophysics and Reactions

> 800 members from 37 countries and 146 institutions

NUSTAR Experiments in the MSV

Reactions with Relativistic Radioactive Beams R³B

EURORIB'12 - Abano Terme May 20-25, 2012

R³B reaction types

Reaction type	Physics goals
Knockout	Shell structure, valence-nucleon wave function, many-particle decay channels
	unbound states, nuclear resonances beyond the drip lines
Quasi-free scattering	Single-particle spectral functions, shell-occupation probabilities,
	nucleon-nucleon correlations, cluster structures
Total-absorption measurements	Nuclear matter radii, halo and skin structures
Elastic p scattering	Nuclear matter densities, halo and skin structures
Heavy-ion induced	Low-lying transition strength, single-particle structure, astrophysical S factor,
electromagnetic excitation	soft coherent modes, low-lying resonances in the continuum,
	giant dipole (quadrupole) strength
Charge-exchange reactions	Gamow-Teller strength, soft excitation modes,
	spin-dipole resonance, neutron skin thickness
Fission	Shell structure, dynamical properties
Spallation	Reaction mechanism, astrophysics, applications: nuclear-waste transmutation,
	neutron spallation sources
Projectile fragmentation and	Equation-of-state, thermal instabilities, structural phenomena in excited
multifragmentation	nuclei, γ-spectroscopy of exotic nuclei

Precursor activities with ALADIN/LAND@GSI

Data-taking since 1990

Reactions with Relativistic Radioactive Beams

CALIFA/R³B R&D

General design of the detector based on kinematical considerations

TDR submitted, evaluation ASAP

WG Coordinator: Dolores Cortina-Gil, Univ. Santiago de Compostela

FAIR

Improvement of multi-n recognition

TDR submitted, evaluation ASAP

Proton knockout from 304 MeV/u ¹⁴Be

S245@GSI

EURORIB'12 - Abano Terme May 20-25, 2012

Relative-energy spectrum of ¹H(¹¹Li,2p)¹⁰He

DESPEC

DESPEC: decay spectroscopy using gamma-ray spectroscopy and neutron detection following isomeric or beta-decay of very exotic nuclei

- Gamow Teller strength
- Structure along the proton drip-line
- Structure of r-process nuclei
- g-factors and lifetimes of isomers

(short range correlations, nucleosynthesis, supernovae)
(proton radioactivity, rp-process)
(shell evolution, r-process path)

(evolution of shells and collectivity, nuclear shapes)

• Experiments possible with stopped beams & production rates down to 1 isotope per hour

farthest reach towards the drip lines

HISPEC

HISPEC: high resolution in-flight gamma-spectroscopy

- Excited states in exotic nuclei
 - Inelastic excitation (EM, hadronic), secondary fragmentation, knock-out
- Lifetimes and g-factors of short-lived excited states

(evolution of shells and collectivity)

(phase-/shape-transitions & shape coexistence)

(isospin symmetry, pn-pairing)

- Experiments possible with medium-energy beams (50-100 AMeV)
- Broad program for nuclei with A up to ~100

RISING Stopped Beam set-up

OR1312 - AL

105 Ge crystals, 3 rings Energy resolution (FWHM): 0.2% Total efficiency: \approx 15 % [at E_{γ} = 1.3 MeV] digital signal processing, time stamped data

Instrumentation developments

AGATA → J. Valiente Dobon → PRESPEC@GSI AIDA

 $\begin{array}{l} \mbox{4$\pi$ Neutron Array} \\ \mbox{development on-going} \end{array}$

LYCCA TDR accepted, LYCCA-0 operational

Plunger Device operational, adaptation ongoing

C*

• 180 large volume 36-fold segmented Ge crystals in 60 triple-clusters • Digital electronics and sophisticated Pulse Shape Analysis algorithms allow Operation of Ge detectors in position sensitive mode $\rightarrow \gamma$ -ray tracking

MATS and LASPEC

MATS and LASPEC: ground state properties using high-precision techniques

- Penning trap system (MATS)
 - High-precision masses for highly charged ions
 - Trap-assisted and in-trap spectroscopy
- Laser spectroscopy (LASPEC)
 - Ground state spins, moments, isotope shifts from laser spectroscopy

(evolution of shells and nuclear shapes)

(nuclear astrophysics input: masses, EC rates, GT strength)

D

B.2

A.3 C.1

C.4

B.4

B.3

B.1

(test of fundamental symmetries: CKM unitarity, CVC)

- Stopping in and extraction from gas-cell
- charge breeding & non-destructive techniques
- half-life limit ~10ms
- Access to refractory elements, highest precision

LaSpec & MATS @ FAIR

NUSTAR Experiments in Modularized Start Version

ILIMA in CR: mass measurements of nuclei with half-lives in the ms region Masses of very exotic nuclei using isochronous mode & TOF technique Half-lives via detection of decay products with particle detectors Study of isomeric states (shell evolution, effective interaction) (nuclear astrophysics input: masses, half-lives) Particle identification detectors Masses with precision ~50 keV Many masses at same time resonant access to nuclei with half-lives shorter than cooling times Schottky pickups TOF detectors CR Stochastic cooling

ILIMA in CR

NUSTAR programme at the NESR

Experiments with stored, electron cooled ion beams

- World-wide unique
- Conceptionally new experiments

ILIMA

electron cooled beams needed for

- higher precision and separation (ground and isomeric states)
- time-resolved studies (unique decay modes, e.g. bound beta decay)
- studies with pure isomeric beams

EXL Elastic and inelastic scattering, reaction with low-momentum transfer
matter distributions, monopole resonances, capture reactions, charge exchange reactions, transfer, knock-out

(n-skins, compressibility, GT-strength, shell evolution, nucl. astrophysics reactions)

The EXL experiment

EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-ion scattering in the storage ring (EXL)

Scattering in inverse kinematics

Low-momentum transfer region often most important, e.g.,

- giant monopole excitation
- elastic scattering
- Experimental difficulty
 - low recoil energies
 - thin targets (low luminosity)

EXL solution:

in-ring scattering at internal gas-jet targets

gaining back luminosity due to circulation frequency of $\sim 10^6$

Long-term – ELISe and AIC

Inelastic scattering in the eA collider

- Excitation energy is measured directly (below and above particle tresh.)
- momentum transfer dependence → multipolarity of transition can be determined
- final state identification with unprecendented efficiency (e,e'X) → (e,e' A') → suppression of elastic radiative tail (no background)
- ➔ Low lying strength (structure) E.g.: E1-Soft-Dipole mode: transition density peaks in the interior.

Sagawa, Esbensen, NUPA693(2001)448

NESR (Module 4)

Experiments with stored, electron cooled ion beams

- World-wide unique
- Conceptionally new experiments

APPA

SPARC: Precision Studies of the Quantum Dynamics of Atomic Systems

FLAIR: Atomic Physics with slow pbars

NUSTAR

ILIMA: High-precision mass measurements, isomeric beams – also in CR

EXL: Elastic and inelastic scattering, reaction with low-momentum transfer

ELISe: Elastic and inelastic electron scattering on RIBs

AIC: p-bar annihilation on RIBs

SPARC initiative: move parts or whole APPA and NUSTAR ring programmes to the HESR/ ESR

Highly-Charged Ions at Low Energies

Spectroscopy for tests of QED

- High-precision x-ray spectroscopy
 - 1s-Lamb-Shift
 - Two-Electron-QED
- Recoil ion momentum spectroscopy
 - Highly-excited stated
- Laser Spectroscopy
- Recombination Spectroscopy with high resolution

Atomic collisions

- Sub-femtosecond correlated dynamics
- Unexplored regime: strong perturbation Q/v

Nuclear Physics at Low-Energies

– Similar to TSR@ISOLDE (→ R. Raabe Tuesday)

Features@Cryring

- Low-energy and electron cooled beams
- Electron cooling with adiabatic expansion
- Slow extraction
- High-luminosity for in-ring experiments
- Very fast deceleration 7 T/s
- Internal jet target

FLAIR-Facility & SIS18

Cryring at the ESR

Conclusions

- The FAIR facility will open up unique possibilities in large realms of Radioactive Beam Physics
 - "Chemical blindness" of production
 - Exotic nuclei will be studied with a range of methods
- R³B Reactions with relativistic radioactive beams yield exceptional prospects for studies of nuclear systems at the extremes, based on a generic fixed-target set-up
 - Fully adapted to Super-FRS production method
- Highest achievable resolution experiments with fast and stopped beams with HISPEC and DESPEC
 - AGATA most advanced gamma detector existing
- MATS/LaSPEC/ILIMA studies of ground-state properties (masses, moments) at highest precision and shortest half-lives
- Exciting future prospects with EXL, ELISe, AIC when going towards full facility
 - Ring branch unique for FAIR
 - Intermediate programme with CRYRING@ESR?

IB'12 - Abano Terme May 20-25, 2012 THANKS to all NUSTAR colleagues for providing slides!