

The RI Beam Factory (RIBF) at RIKEN – Status and Future Prospects

Walter F. Henning RIKEN Nishina Center

EURORIB12, Abano Terme, May 21-25, 2012

Outline

- 1. Status of RIBF
 - Facility and RIB capabilities
 - Present program
 - Recent results
- 2. New Initiatives in Experimental Facilities
 - SAMURAI
 - EURICA
 - Mass Ring
 - SCRIT
- 3. Accelerator Improvements & Extensions
 - Short-term upgrades
 - Long-term conceptual considerations
- 4. Outlook

Approaching the Neutron-Dripline: Ne- Isotopes

Transmission & Interaction Cross Section Measurements

M. Takechi et al., Nucl. Phys. A 834 (2010) 412

Spectroscopy in the Island of Inversion: ⁴²Si structure via gamma-ray spectroscopy following two-proton removal reaction (Courtesy Satoshi Takeuchi)

Primary beam: ⁴⁸Ca 345*A* MeV -- Primary beam intensity: ~70 pnA (average)

Primary target: Be 15mm

Beam intensity: Reaction targets: 40k pps (average) C 2.54g/cm²

S. Takeuchi et al., RIKEN Accel. Prog. Rep. 36, 148 (2003)

S. Takeuchi et al., Phys.Rev. C, 79:054319, 2009.

Toward the r-process path - β -decay half-lives (A~110)

Systematic studies of $T_{1/2} \leftarrow \rightarrow Mass, Q_{\beta}, S_{n}$

Nishimura *et al.* PRL106, 052502 (2011)

Outline

- 1. Status of RIBF
 - Facility and RIB capabilities
 - Present program
 - Recent results
- 2. New Initiatives for Experimental Facilities
 - SAMURAI
 - EURICA
 - Mass Ring
 - SCRIT
- 3. Accelerator Improvements & Extensions
 - Short-term upgrades
 - Long-term conceptual considerations
- 4. Outlook

SAMURAI Commissioning May 2012

- All the detectors and DAQ commissioned with beam and calibrated
- HI-neutron coincidences
 - − ${}^{17}C \rightarrow {}^{16}C+n {}^{15}B+n$
 - − ¹⁵C \rightarrow ¹⁴C+n
 - − ¹⁴Be \rightarrow ¹²Be+2n

- **RIKEN**: K. Yoneda, N. Fukuda, N. Inabe, T. Isobe, T. Kubo, K. Kusaka, T. Motobayashi, J. Ohnishi, H. Otsu, H. Sato, Y. Shimizu, H. Suzuki, H. Takeda, S. Takeuchi
- **Tohoku U**: T. Kobayashi, K. Takahashi, K. Sekiguchi
- **-Tokyo Tech**: T. Nakamura, N. Kobayashi, Y. Kondo, R. Minakata, S. Nishi, S. Ogoshi, T. Sako, R. Tanaka
- Kyoto U: Y. Matsuda, T. Murakami
- Kyushu U: T. Teranishi
- France: F. Delaunay, J. Gibelin, M. Miguel
- Germany: T. Aumann, Y. Togano
- Korea: Y. Sato, J. Hwang, S. Kim

Courtesy K. Yoneda T. Nakamura

- "Spectroscopy of unbound oxygen isotopes"
 - Spokesperson: Yosuke Kondo (Tokyo Tech)
 - Observation of unbound oxygen isotopes
- "Exclusive Coulomb Breakup of neutron drip-line Nuclei"
 - Spokesperson: Takashi Nakamura (Tokyo Tech)
 - Coulomb breakup of neutron-rich boron and carbon isotopes
- "Structure of ^{18,19}B and ^{21,22}C"
 - Spokesperson: Nigel Orr/Julien Gibelin (LPC-Caen)
 - Observation of unbound states in neutron-rich boron and carbon isotopes

EU ROBALL RI KEN C luster A rray

Collaboration that uses high-efficiency Ge-spectrometer for isomeric and β-delayed spectroscopy at RIKEN

- 12 Cluster detectors
 - 84(88) crystals
 - High granularity
 - 15 % photopeak efficiency at 662 keV

Ancillary detectors, e.g. the SIMBA array

EURICA : Assembly and Commissioning

The EURICA Collaboration

A. Algora¹, N. Aoi², H. Baba³, T. Bäck⁴, Ch. Bauer³⁷, G. Benzoni⁵, N. Blasi⁵, A. Blazhev, M. Bostan⁶, P. Boutachkov¹⁹, A. Bracco^{5,7}, S. Brambilla⁷, F. Browne⁴⁴, A. Bruce⁴⁴, L. Cáceres⁸, B. Cakirli³⁹, F. Camera^{5,7}, W.N. Catford¹⁸, I. Celikovic^{8,9}, J. Chiba¹⁰, E. Clément⁸, F. Crespi^{5,7}, P.V. Cuong⁴⁶, G. de Angelis^{11,12}, G. de France⁸, N. de Séréville¹³, F. Didierjean¹⁴, Zs. Dombradi⁴⁰, C. Domingo-Pardo¹, M. Doncel¹⁵, P. Doornenbal³, G. Duchêne¹⁴, T. Engert¹⁹, N. Erduran¹⁶, Th. Feastermann²⁰, E. Farnea^{11,12}, S. Franchoo¹³, Y. Fujita², A. Gadea¹, U. Garg⁵⁰, A. Garnsworthy¹⁷, W. Gelletly¹⁸, J. Gerl¹⁹, R. Gernhäuser²⁰, S. Go²¹, A. Gottardo^{11,12}, E. Gregor¹⁹, S. Grévy²², G. Hackman¹⁷, F. Hammache¹³, T. Hayakawa²³, Ch. Hinke²⁰, Y. Hirayama²⁴, H. Hua²⁵, L.T.Q. Huong⁴⁶, T. Hüyük¹, F. Ibrahim¹³, Y. Ichikawa³, E. Ideguchi²¹, N. Imai²⁴, N. Inabe³, H. Ishiyama²⁴, T. Isobe³, S. Jeong²⁴, H. Jung⁵², A. Jungclaus²⁶, D. Kameda³, L.H. Khiem⁴⁶, T. Koike³⁸, I. Kojouharov¹⁹, K. Kolos¹³, T. Komatsubara²⁷, A. Korichi²⁸, W. Korten⁵¹, R. Krücken¹⁷, T. Kubo³, N. Kurz¹⁹, A. Kusoglu⁶, S. Lalkovski⁴⁷, F. Le Blanc¹³, J. Lee³, S. Leoni^{5,7}, M. Lewitowicz⁸, Z.H. Li^{3,25}, X. Li²⁵, Zh. Li⁴¹, M. Liu⁴², W. Liu⁴¹, Zh. Liu⁴³, G. Lorusso³, R. Lozeva¹⁴, S. Lunardi^{11,12}, P. Mason¹⁸, I. Matea¹³, D. Mengoni^{11,12}, C. Michelagnoli^{11,12}, B. Million⁵, H. Miyatake²⁴, V. Modamio^{11,12}, C.B. Moon²⁹, A. Morales⁷, K. Morimoto³, K. Moschner⁵³, T. Motobayashi³, T. Nagatomo^{3,30}, T. Nakamura³¹, T. Nakao³, M. Nakhoshtin¹⁸, D. Napoli¹¹, M. Niikura¹³, H. Nishibata³², D. Nishimura³, M. Nishimura³, S. Nishimura³, F. Nowacki¹⁴, J. Nyberg³³, A. Odahara³², R. Orlandi²⁶, S. Orrigo¹, J. Philip¹¹ N. Pietralla³⁷, S. Pietri¹⁹, A. Pipidis¹¹, Zs. Podolyak¹⁸, B. Quintana¹⁵, M. Ramdhane³⁴, F. Recchia¹², P. Regan¹⁸, S. Rice¹⁸, O. Roberts⁴⁴, B. Rubio¹, E. Sahin^{11,12}, M. Sako^{3,35}, H. Sakurai^{3,36}, H. Schaffner¹⁹, H. Scheit³⁷, T. Shimoda³², P. Shury^{3,27}, K. Sieja¹⁴, G. Simpson³⁴, P.A. Söderström³, D. Sohler⁴⁰, T. Sonoda³, O. Sorlin⁸, I. Stefan¹³, K. Steiger²⁰, D. Steppenbeck³, T. Sumikama¹⁰, B. Sunchan^{48,49}, H. Suzuki³, J. Taprogge²⁶, J. Takatsu³², H. Takeda³, S. Takeuchi³, D. Testov¹³, G. Thiamova³⁴, J.C. Thomas⁸, T.D. Trong⁴⁶, H. Ueno³, C. Ur^{11,12}, Zs. Vajta⁴⁰, J. Valiente Dobon^{11,12}, D. Verney¹³, Y. Wakabashi²³, T. Wakui³⁸, Y. Wang⁴¹, H. Watanabe³, Y. Watanabe²⁴, V. Werner⁴⁵, O. Wieland⁵, H.J. Wollersheim¹⁹, Z. Xu³⁶, A. Yagi³², M. Yalcinkaya⁶, H. Yamaguchi²¹, Y. Ye²⁵, A. Yoshimi³, K. Yoshinaga^{3,10}, Y. Zhang⁴², Y. Zheng⁴², and X. Zhou42

 ¹University of Valencia, Spain
 ²RCNP, Japan
 ³RIKEN, Wako, Japan
 ⁴Royal Institute of Technology, Stockholm, Sweden
 ⁵INFN, Milano, Italy
 ⁶University of Istanbul, Turkey
 ⁷University of Milano, Italy
 ⁸GANIL, Caen, France
 ⁹VINCA, Belgrade, Yugoslavia
 ¹⁰Tokyo University of Science, Japan
 ¹¹LNL, Legnaro, Italy
 ¹²University of Padova, Italy
 ¹³IPN Orsay, France ¹⁴IPHC, Strasbourg, France
 ¹⁵LRI - University of Salamanca, Spain
 ¹⁶University of Akdeniz, Antalya, Turkey
 ¹⁷TRIUMF, Vancouver, Canada
 ¹⁸University of Surrey, Guildford, UK
 ¹⁹GSI, Darmstadt, Germany
 ²⁰TU München, Germany
 ²¹CNS, University of Tokyo, Japan
 ²²CENBG Bordeaux, France
 ²³JAEA, Tokai, Japan
 ²⁴KEK, Tokai, Japan
 ²⁵Peking University, China
 ²⁶CSIC, Madrid, Spain ²⁷ University of Tsukuba, Japan
 ²⁸CSNSM Orsay, France
 ²⁹ Hoseo University, Chun-Nam, Korea
 ³⁰ ICU, Tokyo, Japan
 ³¹ Tokyo Institute of Technology, Japan
 ³² Osaka University, Japan
 ³³ Uppsala University, Sweden
 ³⁴ LPSC Grenoble, France
 ³⁵ Kyoto University, Japan
 ³⁶ University of Tokyo, Hongo, Japan
 ³⁷ TU Darmstadt, Germany
 ³⁸ Tohoku University, Japan
 ³⁹ MPI Heidelberg, Germany
 ⁴⁰ ATOMKI, Debrecen, Hungary

 ⁴¹ CIAE, Peking, China
 ⁴² IMP Lanzhou, China
 ⁴³ University of Edingburgh, UK
 ⁴⁴ University of Brighton, UK
 ⁴⁵ Yale University, USA
 ⁴⁶ Vietnam Academy for Science and Technology, Hanoi, Vietnam
 ⁴⁷ University of Sofia, Bulgaria
 ⁴⁸ Beihang University, Beijing, China
 ⁴⁹ Justus-Liebig-University, Giessen, Germany
 ⁵⁰ University of Notre Dame, USA
 ⁵¹ CEA Saclay, France
 ⁵² Chung-Ang University, Seoul, Korea
 ⁵³ University of Cologne, Germany

Collaborations for RIBF

Workshops for collaborations held and planned:

SAMURAI (Superconducting Analyzer for Multi-particle from Radio Isotope Beams):

Nov. 2010 – SAMURAI TPC Nov. 2010 – construction proposal to the RIBF PAC (local)

Mar. 2011 – day-one experiments / formation of "SAMURAI Collaboration"

EURICA (Campaign with the Euroball clusters at RIKEN):

May 2011 – physics cases in the campaign planned in 2012

E(U)RICA proposal to the Gamma Pool Committee formation of collaboration

DALI2 and GRAPE (experiments with NaI(TI) and Ge detector arryas):

July 2011 (in the "Gamma11" Symposium)

 physics cases for fast beam experiments at RIBF formation of "SUNFLOWER Collaboration"

Next Generation Gamma-Detector System SHOGUN

Cooperation with PARIS Collaboration

Construction of Rare RI Ring

FY2011.3 : President's Discretionary Budget was approved

Table 3 Delay time for Individual injection in Rare-RI Ring.

	Delay time (ns)
Trigger detector (Plastic+PMT) at F3	50
Transport cable from F3 to Kicker (~105 m length)	370
Power-supply device for thyratron	275
Thyratron to flat-top center in kicker magnetic filed	230
Total	925

Status of the SCRIT Electron Scattering Facility

Performances of the SCRIT and Test Experiments using Stable ¹³³Cs

Commissioning of ISOL and preparation of UCx target

Outline

- 1. Status of RIBF
 - Facility and RIB capabilities
 - Present program
 - Recent results
- 2. New Initiatives in Experimental Facilities
 - SAMURAI
 - EURICA
 - Mass Ring
 - SCRIT
- 3. Accelerator Improvements & Extensions
 - Short-term upgrades
 - Long-term conceptual considerations

4. Outlook

Simultaneous operation of 3 accelerators

U beam from 28GHz SC-ECRIS

(Higurashi, Ohnishi, Nakagawa)

Intensity of U35+

•Stable.

•U-rod lasted ~1 month.

Emittance

•70~100 (π) mm-mrad @4-rms.
•Better than expected.

(Suda, Yamada)

Stability of RILAC2 injector

Achieved beam intensities

- pol-d(250 MeV/u) 120 pnA
- d(250 MeV/u) 1000 pnA
- ⁴He(320 MeV/u) 1000 pnA
- ¹⁴N(250 MeV/u) 400 pnA
- ¹⁸O(345 MeV/u) 1000 pnA
- ⁴⁸Ca(345 MeV/u) 230 pnA
- ⁸⁶Kr(345 MeV/u) 30 pnA
- ¹²⁴Xe(345 MeV/u) 16 pnA
- ²³⁸U(345 MeV/u) 3.8 pnA

Upgrade plan: Charge strippers

Helium gas stripper @ 11 MeV/u

Upgrade plan

The RI Beam Factory (RIBF) at RIKEN Status and Future Production III Status and Future Production III Matter F. Henning Riken Nishina Center

EURORIB12, Abano Terme, May 21-25, 2012