

What Masses Can Teach Us About Stellar Evolution

Susanne Kreim for the ISOLTRAP Collaboration May 22nd 2012

CERN, Geneva, Switzerland

Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Outline

- Introduction and Motivation
- Principle of Mass Spectrometry
 - Storage rings
 - Penning traps
- The ISOLTRAP setup and Highlights
- Stellar nucelosynthesis and the origin of heavy elements
 - rp-process in the light-mass region
 - neutronisation in the crust of neutron stars
 - r-process in the heavy-mass region
- Possibilities at Future Facilities

Summary

Creation of Heavy Elements

Possible Nuclear Processes

- Astrophysical models of nucleosynthesis treat an extreme environment
- Suffer from large uncertainties
 - Astrophysical site unknown
 - Theoretical predictions cannot rely on experimental data
- Precise masses needed to constrain models

20

Storage and Cooling Techniques

Penning trap

Storage ring

Relativistic particles

- Ions can be cooled and stored for very long times
- Single-ion sensitivity
- High accuracy achievable

Storage-Ring Spectrometry

B. Franzke et al., Mass Spectrometry Reviews 27 (2008) 428

Penning-Trap Spectrometry

Particle stored by superposition of strong homogeneous magnetic field in z direction and weak, electrostatic potential for axial confinement

L. S. Brown *et al.*, Rev. Mod. Phys. **56**, 233 (1986)

From frequency to mass using time-of-flight ion-cylotron resonance technique

M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)

The ISOLTRAP Setup

RP-Process above *Z*=32

Precise masses used to calculate possible rp-process path using nuclear reaction networks

Mass Measurements at CSRe

NUCLEAR ASTROPHYSICS

Star bursts pinned down

One of the main uncertainties in the burn-up of X-ray bursts from neutron stars has been removed with the weighing of a key nucleus, ⁶⁵As, at a new ion storage ring.

10

X. Tu *et al.,* Phys. Rev. Lett. **106**, 112501 (2011) X. Tu *et al.*, NIM A **654**, 213 (2011) New masses: ⁶³Ge, ⁶⁵As, ⁶⁷Se, and ⁷¹Kr -> ⁶⁴Ge not a waiting point

Neutron Stars – Birthplace of Heavy Elements?

- Neutronization of matter: neutronrich nuclei become "equilibrium nuclei"
- Ground-state composition of outer crust can be modeled even at zero temperature
- Two groups of nuclides constituting the outer crust: N=50 and N=82
- Mass models used whenever experimental masses not available
- Is ⁸²Zn part of outer crust?

S. Goriely et al., A&A 531, A78 (2011)

⁸²Zn Mass and Half-Life

 $\frac{460}{440} + \frac{400}{440} + \frac{400}{400} +$

Isotope	Uncertainty	
	Mass	Half-life
⁸⁰ Zn	4 keV	27 ms
⁸¹ Zn	4 keV	26 ms
⁸² Zn	6 keV	70 ms

S. George *et al.*, Phys. Rev. Lett. **98**, 162501 (2007)
M. Kretzschmar, Int. J. Mass Spectrom. **264**, 122 (2007)
and many others...

Combined all ISOLDE know-how to realize this measurement

- Special measurement cycle at ISOLTRAP
- UCx target with quartz transfer line
- neutron converter
- RILIS (tune every 15 min.)

Depth profiling of a Neutron Star

Courtesy S. Goriely

Depth profiling of a Neutron Star

Results removed from presentation

Courtesy S. Goriely

R-Process Above A=200

- Focus: Precision mass measurements of nuclei with N>1.5Z and t_{1/2} in ms range
 - Uncertainties of 10⁻⁶ needed to impact modelling
 - Beta-decay half-lives offer information about stellar evolution
- Experimental challenge
 - Low production yields
 - High contamination ratios

Results removed from presentation

Neutron-rich masses on Fr, Ra, Rn, and At also from storage-ring spectrometry at GSI.

L. Chen et al., Nucl. Phys. A 882, 71 (2012)

What Comes Next?

LETTER

doi:10.1038/nature09466

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Heaviest neutron star with 1.97±0.04M_{sun}

- Direct measurement of neutronstar mass from increase in signaltravel time near companion
- Heavy constraint on equation of state and thus model space of stellar nucleosynthesis
 - Impact of 3N-forces on neutron matter (group of A. Schwenk)

Measurement Possibilities

- N=82 nuclei constitute outer crust according to models of nucleosynthesis
- MLLTRAP + MR-TOF at SPIRAL 2: higher yields on n-induced fission
 - Groups of P. Thirolf and W. Plass
- HIE-ISOLDE: increase in proton energy to 2GeV and proton current to 5µA will enhance fission products
 more neutron-rich, heavy nuclei!

199192

Summary

- Current ISOLTRAP setup and highlights presented
 - Mass database: <u>www.cern.ch/isoltrap/database/isodb.asp</u>
 - Successfully comissioned MR-TOF with online data (similar work at GSI) \geq

- Comprehensive understanding of stellar processes requires precise mass values but also progress in theory. Recent examples:
 - A. Estradé et al., PRL **107**, 172503 (2011) \succ
 - A. Arcones and G. F. Bertsch, PRL **108**, 151101 (2012) \geq
- The mass of ⁸²Zn is the most exotic yet measured for modelling neutron stars
- The very neutron-rich N=82 nuclei will play a big role in the modelling of neutron stars

ISOLTRAP Collaboration

K. Blaum, Ch. Böhm, Ch. Borgmann, R. B. Cakirli, S. Eliseev

S. George, M. Rosenbusch, R. Wolf, L. Schweikhard, F. Wienholtz

G. Audi, <u>D. Lunney</u>, M. Wang, V. Manea

D. Beck, <u>F. Herfurth</u>, J. Kluge, Y. Litvinov, E. Minaya-Ramirez, D. Neidherr

J. Stanja, <u>K. Zuber</u>

T. Cocolios, M. Kowalska, <u>S. Kreim</u>

S. Schwarz, G. Bollen

M. Breitenfeldt

S. Naimi

Thanks...

- ... the ISOLDE Target, RILIS and Technical Team
- ... for funding: BMBF, GSI, CERN, ISOLDE, MPG

NAVI @ GSI

Thank you for your attention!

