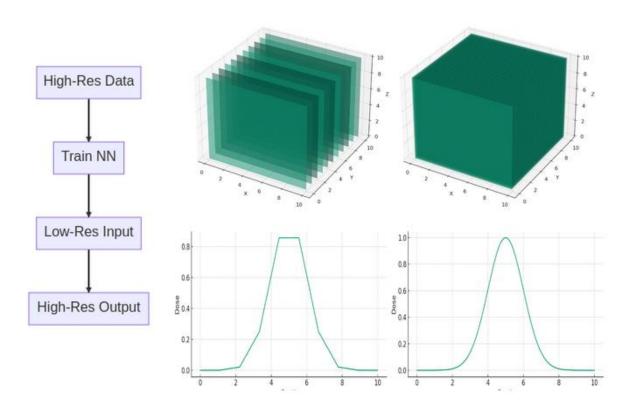
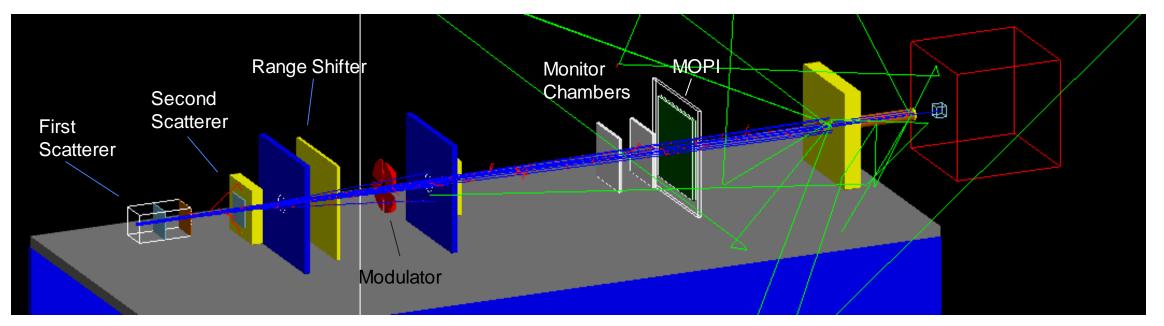
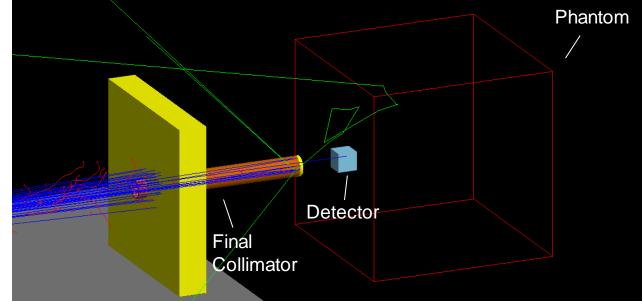
Enhancing Geant4 Monte Carlo Simulations through Machine Learning Integration

Spoke 2 - WP6


G.A.P Cirrone, A. Tricomi, S.Fattori, A. Sciuto, G. Gallo, V. Ientile

Meeting, 23-01-2024


Autoencoder to enhance low voxel density data


Step 1: Data Collection and Preprocessing

- Collect high-density and low-density data from detectors.
- Convert raw data to machine-readable format (CSV, HDF5).
- Normalize data values to a range (e.g., 0-1).
- Split data into training, validation, and test sets.
- Step 2: Install Required Libraries
- Step 3: Import Libraries and Load Data
- Step 4: Data Partitioning
- Step 5: Design the Autoencoder Architecture
- Step 6: Compile and Train the Autoencoder
- Step 7: Use the Autoencoder to Enhance Low-Density Data
- Step 8: Evaluation and Optimization
- Step 9: Deploy the Model

Hadrontherapy example G4

Geant4-based, open-source application, specifically developed for dosimetric and radiobiological studies with protons and ions beams.

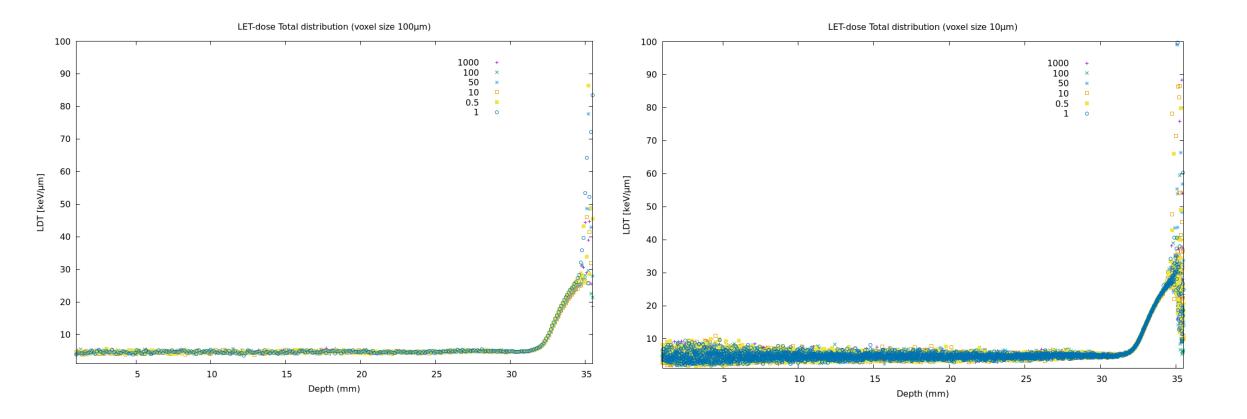
Execution time, CPU and memory usage

Cut(um)	Voxelsize(um)	Exec Time	CPU(%)	MEM(%)
1000	100	00h.00m.11s	16.72	0.08
100	100	00h.00m.12s	18.39	0.08
50	100	00h.00m.15s	20.48	0.09
10	100	00h.00m.26s	26.96	0.09
1	100	00h.02m.33s	31.86	0.1
0.5	100	00h.02m.36s	31.83	0.1
1000	10	00h.00m.43s	28.99	0.1
100	10	00h.00m.45s	29.27	0.1
50	10	00h.00m.51s	29.42	0.1
10	10	00h.01m.28s	30.98	0.1
1	10	00h.04m.12s	32.23	0.1
0.5	10	00h.04m.10s	32.26	0.1
1000	1	00h.06m.14s	31.72	0.1
100	1	00h.06m.25s	31.7	0.1
50	1	00h.07m.10s	31.62	0.1
10	1	00h.08m.47s	31.85	0.1
1	1	00h.15m.04s	32.3	0.2
0.5	1	00h.15m.00s	32.25	0.2

Dell PowerEdge C6525 -2 x AMD EPYC 7413 24-Core CPU 512 GB RAM

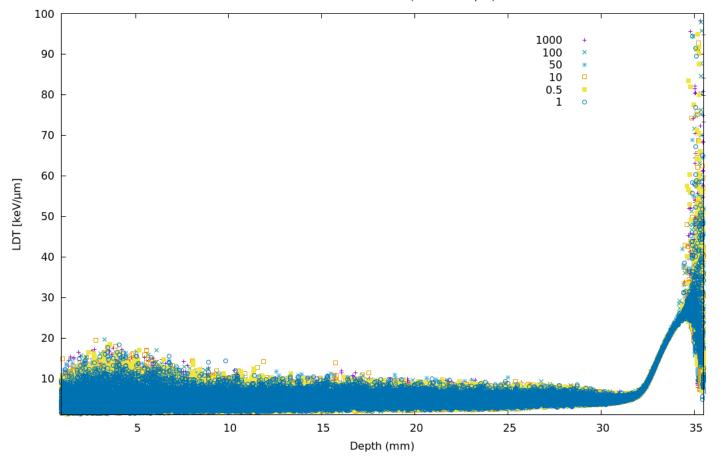
N=32 Threads run/beamOn 50000

Table of exec time and CPU usage

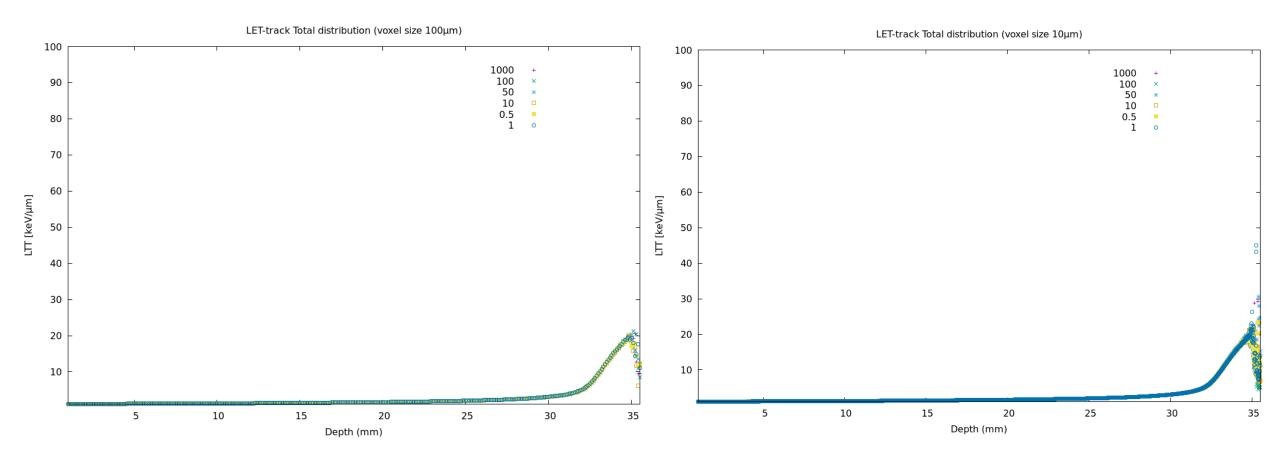

Cut (u)	Voxelsize (u)	Exec Time	CPU (%)	MEM (%)
1000	100	00h.00m.54s	78.96	0.11
100	100	00h.01m.08s	80.97	0.10
50	100	00h.01m.37s	84.47	0.12
10	100	00h.04m.25s	88.46	0.18
1	100	00h.33m.15s	92.03	0.20
0.5	100	00h.33m.20s	92.32	0.20
1000	10	00h.07m.27s	89.84	0.18
100	10	00h.08m.02s	89.81	0.19
50	10	00h.09m.08s	88.72	0.19
10	10	00h.18m.13s	90.50	0.20
1	10	00h.55m.52s	93.28	0.30
0.5	10	00h.56m.01s	92.78	0.30
1000	1	01h.17m.07s	90.07	0.20
100	1	01h.19m.27s	89.92	0.20
50	1	01h.24m.57s	91.63	0.22
10	1	01h.48m.07s	92.10	0.30
1	1	03h.14m.48s	93.31	0.50
0.5	1	03h.15m.00s	93.55	0.50

N.threads= 96 run/beamOn 1000000

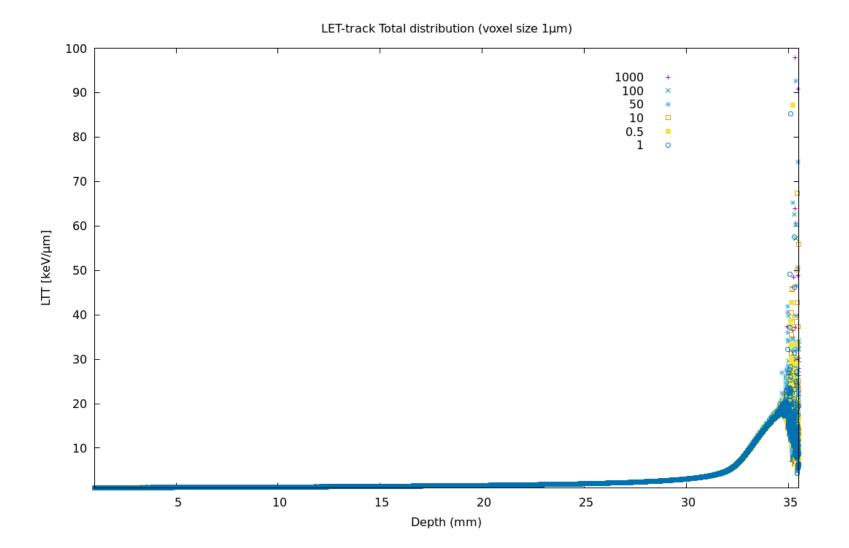
Dose.out


1.																					-					
į	j	j	k	Dose(Gy)		protor						ton_1			on_1			on_1		oton_		prot				ton_1
0	6		0	8.92835e-						249e-					-11			847e-				e-11			9401e	
1	6	9	0	9.34978e-			Θ	0	0	0	0	0	0	0		0	0		.9961					7714e		
2	6	9	0	9.59535e-			Θ	0	0	0	0	0	0	0	0	0	0		.0042					4383e		
3	0	9	0	9.66963e-	05 0	0	Θ	0	0	0	0	0	0	0	0	0	0	06	.99924	4e-05	5368			6087e		
4	6	9	0	9.69344e-			Θ	0	0	0	0	0	0	0	0	0	0		.0043					1541e		
5	e	9	0	9.73492e-	05 0) 0	Θ	0	Θ	0	0	0	0	0	0	0	0	0 7	.0020	7e-05	5369	940	3.3	0737e	e-07	265
6	0	9	0	9.79645e-	05 0) 0	Θ	0	0	0	0	0	0	0	0	0	0	0 7	.0098	3e-05	5369	935	3.2	9459e	e-07	261
7	6	Э	0	9.82922e-	05 0	0	Θ	0	0	0	0	0	0	0	0	0	0	0 7	.0024	5e-05	5369	987	3.1	2056e	e-07	263
8	0	9	0	9.86328e-	05 0) 0	Θ	0	0	0	0	0	0	0	0	0	0	0 7	.0028	3e-05	5370	925	3.1	5954e	e-07	267
9	e	9	0	9.9158e-0)5 0	0	Θ	0	0	0	0	0	0	0	0	0	0	0 7	.0127	5e-05	5370	954	4.1	6769e	e-07	271
1	00	9	0	9.93448e-	05 0) 0	Θ	0	0	0	0	0	0	0	0	0	0	0 7	.0037	5e-05	5371	127	4.0	8863e	e-07	272
L L	۵t	t.o	ı ıt																							
	.01		u																							
i	j	j	k	LDT LTT p	roto	n_1_D	pro [.]	ton_	1_T	prot	on_D)	prot	on_T	I	orot	on_D	р	roton_	Т	prot	on_1	D	prot	on_1	L_T
Θ	O)	0	2.14327 1	.046	647 0	Θ	0	Θ	9.75	109	5.40	327	0	0 (9	0	9 O	Θ	0	0	0	0	0	0	0
1	0	Ð	0	4.66173 1	.049	03 0	Θ	0	0	9.43	159	5.30	463	0	0 (a .	0		~	0	~			0	0	_
2	O	Ð	0	7.60975 1	057									0		9	0	9 O	0	Θ	0	0	0	U	0	0
3	0			1.00010 1	.057	΄ Ο	0	0	Θ	10.2	542	5.36	868		0 (90 90		0	0 0		0 0	0	0	0 0
	U)	0	7.01166 1			0 0	0 0	0 0			5.36 5.33		0		9	0					0	- -			-
4	0		0 0		.055	42 0				11.0	134		326	0 0	0 ())	0 0	9 9	0	0	0	0 0	0	0	0	0
4 5)		7.01166 1	.055	42 0 51 0	0	0	0	11.0 9.89	134 301	5.33	326 435	0 0 0	0 (0 (9 9 9	0 0 0	9 9 9 0	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0
4 5 6	0))	0	7.01166 1 5.12687 1	.055	642 0 651 0 015 0	0 0	0	0	11.0 9.89 15.0	134 301 083	5.33 5.29	326 435 76	0 0 0 0	0 (0 (0 (9 9 9 9	0 0 0 0	5 0 5 0 5 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
_	0 0)	0 0	7.01166 1 5.12687 1 3.59234 1	.055 .053 .050 .050	642 0 51 0 15 0 16 0	0 0 0	0 0 0	0 0 0	11.0 9.89 15.0 13.3	134 301 083 732	5.33 5.29 5.81	326 435 76 901	0 0 0 0 0	0 (0 (0 (0 (9 9 9 9	0 0 0 0	5 0 5 0 5 0 5 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
_	0 0 0)))	0 0 0	7.01166 1 5.12687 1 3.59234 1 3.11049 1	.055 .053 .050 .050 .051	642 0 51 0 15 0 16 0 .28 0	0 0 0 0	0 0 0 0	0 0 0 0	11.0 9.89 15.0 13.3 11.3	134 301 083 732 773	5.33 5.29 5.81 5.64	326 435 76 901 393	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9	0 0 0 0 0	5 0 5 0 5 0 5 0 5 0 5 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
6 7	0 0 0 0))))	0 0 0 0	7.01166 1 5.12687 1 3.59234 1 3.11049 1 3.53447 1	.055 .053 .050 .050 .051 .051	642 0 51 0 15 0 16 0 .28 0 68 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	11.0 9.89 15.0 13.3 11.3 10.1	134 301 083 732 773 942	5.33 5.29 5.81 5.64 5.45	326 435 76 901 393 316	0 0 0 0 0 0 0		9 9 9 9 9 9		D O D O D O D O D O D O D O D O D O D O D O D O	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0

LDT plots



LDT plots


LET-dose Total distribution (voxel size 1µm)

LTT plots

LTT plots

GRAZIE

Enhancing Geant4 Monte Carlo Simulations through Machine Learning Integration

G.A.P Cirrone, S.Fattori, G. Gallo, V. Ientile, A. Sciuto, A. Tricomi

Initial framework definition

Contextualized Explanation:

Training on High-Density Data

The autoencoder would first be trained on the high-density voxelized data, learning to compress this high-quality data into a lower-dimensional latent space and then decompress it back into the original high-density data. During this process, the autoencoder learns the mappings between the highdimensional space and the lower-dimensional latent space, effectively learning the most important features or "essence" of the high-density data.

Applying to Low-Density Data

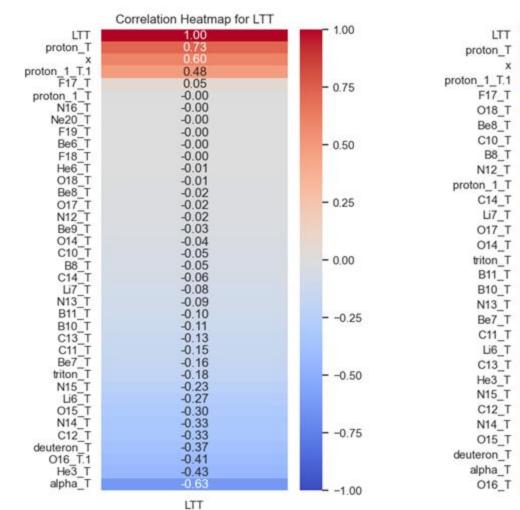
Once trained, you can then use the encoder part of the autoencoder to transform your low-density data into the same latent space. Even though the low-density data lacks some features, the encoder will project this data into a compressed form that still captures the most important features based on what it learned from the high-density data. The decoder part will then expand this compressed form back into the original dimensionality.

In this process, the "gaps" in the low-density data are effectively "filled in" by the decoder, as it reconstructs the low-quality data based on the learned important features of the high-quality data. This results in an enhanced version of your low-density data, making it more comparable to the high-density data it was trained on.

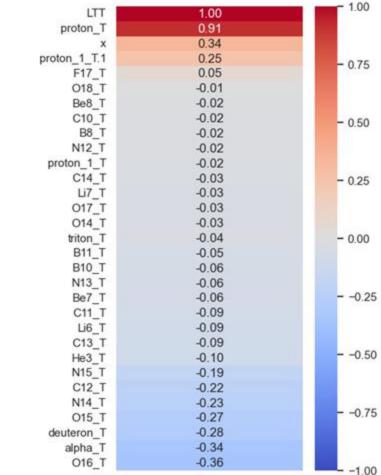
Dataset Overview

1	LDT	LTT	proton_1_D	proton_1_T	proton_1_D.1	proton_1_T.1	proton_D	proton_T	proton_1_D.2	 018_D	018_T	F17_D	F17_T	F18_D	F18_T	F19_D	F19_T	Ne20_D	Ne20_T
0	2.63090	1.04760	0.0	0.0	1.04081	1.04065	11.7570	6.01532	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1.95003	1.04636	0.0	0.0	1.04082	1.04070	12.9513	6.09598	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2.41322	1.04725	0.0	0.0	1.04092	1.04075	13.8869	6.15894	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	2.15345	1.04629	0.0	0.0	1.04089	1.04075	13.5346	6.05996	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	4.35478	1.04927	0.0	0.0	1.04090	1.04074	12.2653	5.99763	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	4.31605	1.05018	0.0	0.0	1.04091	1.04077	11.9284	5.86857	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	4.44597	1.05099	0.0	0.0	1.04095	1.04077	14.2888	6.16782	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	3.77041	1.04961	0.0	0.0	1.04090	1.04078	13.0829	6.10534	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	2.90049	1.04771	0.0	0.0	1.04094	1.04082	11.4468	5.95522	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	3.81664	1.04859	0.0	0.0	1.04095	1.04082	10.9422	5.84279	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

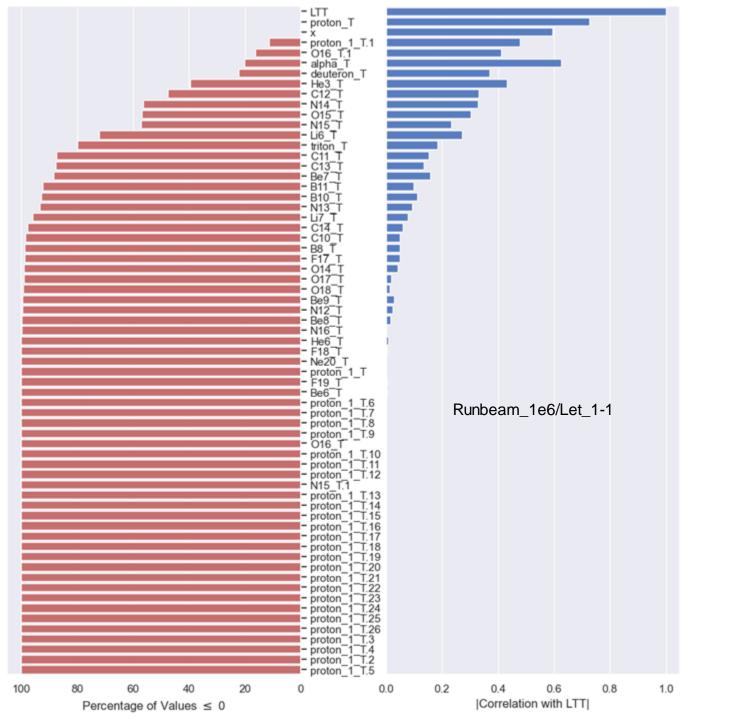
10 rows × 129 columns


	1	LDT	LTT	proton_1_D	proton_1_T	proton_1_D.1	proton_1_T.1	proton_1_D.2	proton_1_T.2	proton_D	 017_D	017_T	018_D	018_T	F17_D	F17_T	F18_D	F18_T	Ne20_D	Ne20_T
0	0	4.07849	1.05314	0.0000	0.0000	0	0	1.04243	1.04177	13.1367	0.000	0.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0
1	1	4.18778	1.05676	0.0000	0.0000	0	0	1.04595	1.04335	13.3717	0.000	0.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0
2	2	4.15443	1.05973	0.0000	0.0000	0	0	1.04869	1.04472	13.6434	364.684	364.684	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0
3	3	4.28368	1.06016	0.0000	0.0000	0	0	1.05032	1.04619	12.4763	0.000	0.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0
4	4	4.40955	1.06272	1.0467	1.0467	0	0	1.05011	1.04759	11.8088	0.000	0.000	255.106	234.794	0.0	0.0	0.0	0.0	0.0	0.0
5	5	4.95228	1.06526	0.0000	0.0000	0	0	1.05650	1.04930	11.9446	0.000	0.000	157.720	157.720	0.0	0.0	0.0	0.0	0.0	0.0
6	6	4.25197	1.06573	0.0000	0.0000	0	0	1.05811	1.05069	11.2372	0.000	0.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0
7	7	4.65704	1.06751	0.0000	0.0000	0	0	1.05795	1.05199	11.4878	0.000	0.000	192.027	192.027	0.0	0.0	0.0	0.0	0.0	0.0
8	8	4.19457	1.06913	0.0000	0.0000	0	0	1.06176	1.05355	10.8126	278.604	278.604	390.294	390.294	0.0	0.0	0.0	0.0	0.0	0.0
9	9	4.38071	1.07270	0.0000	0.0000	0	0	1.06316	1.05500	10.4814	0.000	0.000	508.197	396.495	0.0	0.0	0.0	0.0	0.0	0.0

Build the Dataset


- Use the LET and contributions to LET from primaries and fragments as features
- Create a dataset consisting solely of LTT or LDT vectors (similar to image dataset)

Feature Correlation


Runbeam 1e6/Let 1-1

23-01-2024

Feature selection

- Feature correlation appears to be related to the percentage of zero values in each feature.
- In principle, features that are not correlated could be dropped from the data set.