

Design and test of the lens based optical detector for SAND in the DUNE experiment Dil

Silvia Repetto, on behalf of the DUNE collaboration

INFN – Sezione di Genova and Dipartimento di Fisica dell'Università di Genova, Genova, Italy

The Deep Underground Neutrino Experiment and the Far Detector

Near Detector

During the **Phase I**, the Near Detector will be composed of three subdetectors:

ND-LAr, featuring a LAr TPC

- **TMS** Temporary Muon Spectrometer

Main physics goals:

High precision measurements of the neutrino oscillation

- parameters
- Study of CP violation
- Supernova and solar neutrinos detection
- ✤BSM searches

Far Detector:

- 1300 km far away (South Dakota) and 1.5 km deep underground
- Phase I: two Liquid Argon (LAr) TPC modules
- **Phase II**: four LAr TPC modules, with a total mass of 70 kt of LAr

GRAIN (GRanular Argon for Interactions of Neutrinos) detector

It is a **passive target**:

- **1-ton LAr** in a magnetized volume • To study for v-Ar interactions with downstream tracker/calorimeter It is an **active target**, instrumented with
- sensors:

UV Lenses

5 cm

- For collecting UV scintillation light with arrays of SiPMs
- For performing imaging of the event Lens based optical system

6.4 cm

• **2 mm side** SiPM 32x32 matrices

SAND – System for On-Axis Neutrino Detection

Phase 1 configuration

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

SAND detector

- It's a **multipurpose** detector for:
- > Monitoring the on-axis v/\overline{v} spectra to detect beam variations on a weekly basis
- $\succ v_{\mu}, v_{e}$ on-axis flux measurements
- Performing neutrino cross-section studies on different nuclear targets

It is composed of:

- □ Superconducting magnet (0.6 T)
- **□** Electromagnetic calorimeter
- **Straw Tube Tracker**
- **GRAIN**: one ton LAr active target

A **unique ASIC** specifically designed for **GRAIN**

Challenges to be addressed:

- 1. The VUV light emitted by the LAr scintillation is very short (127 nm)
- 2. The refractive index of LAr is not precisely known, but it's close to the RI of common lens materials

Tests of the acquisition board with an artificial light source

1. Setup

10 cm

100 120 140 160 180 200 220 240 260 280

Wavelength (nn

Sapphire glass (L11938

TELEDYNE LECROY Trigger signal Pulsed light signal 2 Bits 1.00 µs/div Auto 2.

3. Preliminary results

SC magnet and em calorimeter from KLOE experiment

Readout electronics design: requirements and proposed architecture

1. Proposed architecture

GRAIN ASIC

- **1024** channels
- Integration windows with:
- □ rising edge (TR of 100 ps)
- □ falling edge (TR of few ns)
- **Charge integrator**
- Power consumption < **5 mW/ch**

2. ASIC requirements

1) Capability to accurately detect 0-10 photons per channel 2) Saturation over 80/100 photons for each integration window

3. Preliminary studies

- 18 counts are expected for each channel
- Thresholds have to be optimized for some channels
- Light is detected on the whole matrix

4. Future perspectives

 Optimization of threshold and gain for each channel • Tests with SiPM of 3 mm side matrix • Tests with lens prototypes

Left: distribution of the number of photons per integration window *Right:* reconstructed photons vs Monte Carlo – truth photons *Selected sample*: integration windows with 2 < # photons < 100 The number of photons is well reconstructed up to ≈200 photons

4. Conclusions

The preliminary ASIC design works as expected

Contact: silvia.repetto@ge.infn.it