XENONNT Event Reconstruction with Machine
JG | U Learning Techniques

J. Merz! (XENON Collaboration)

XENONNT Time Projection Chamber
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Schematic of the working principle of a dual-phase time projection
suppress neutron backgrounds  chamber (Tpc).
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TPC Signals Model Architecture
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e Comparison with the default classification method of our analysis software

Single Electron Pollution straxen? and classification by a Bayesian network?

e For S1 the Recall is above 98% over the whole area range, outperforming straxen
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e The Recall for S2 is always higher than 94%, outperforming straxen and the
501 Bayesian network over the area range up to around 30 PE
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