

Istituto Nazionale di Fisica Nucleare Sezione di Ferrara Università degli Studi di Ferrara, Italy

Istituto di Fisica Nucleare, sezione di Ferrara, Italy

The Deep Underground Neutrino Experiment

DUNE is a *next-generation long-baseline experiment for neutrino physics* under construction in US, whose scientific program is expected to start around 2030.

It will consist of two detectors, exposed to an intense muonic neutrino beam, produced at FNAL (Illinois):

- The Near Detector (ND) will be located at FNAL;
- The Far Detector (FD) will be located at SURF (South Dakota), 1300 km away from ND and about 1.5 km underground.

DUNE will pursue a broad science program:

- Study **neutrino oscillations** by using v_{μ} and $\overline{v_{\mu}}$ beams;
- Evaluate the **CP violation** in the leptonic sector;
- Determine the **neutrino mass ordering**;
- Search for **proton decay** (BSM physics);
- Detect supernova neutrinos.

127 nm

350 nm

430 nm

DUNE Far Detector

It will consist of 4 Liquid Argon Time Projection Chambers (LArTPCs). Two single-phase technologies are currently developed: horizontal drift (HD) and vertical drift (VD), depending on the orientation of the electric field.

The topology of a *neutrino – LAr interaction* is reconstructed by looking at the tracks of secondary charged particles, which produce:

- Ionization electrons, which drift towards the anodic wire planes due to the electric field, providing two spatial coordinates;
- Scintillation light, detected by the Photon Detection System (PDS), providing the event start time for the 3rd spatial coordinate reconstruction.

FD-HD Photon Detection System

The **PDS** detects the VUV scintillation light produced by ionizing particles in LArTPC-HD. It is made by X-ARAPUCA modules, which consist of cells that act as light traps, by capturing photons inside a box where are detected by Silicon PhotoMultipliers (SiPMs).

liquid argon

scintillation

Dichroic Filter

WLS plate

Reflective surface

PTP

LAr

LAr

X-ARAPUCAs are made by several layers:

- P-Terphenyl (PTP), to shift VUV photons to $\lambda = 350$ nm;
- Dichroic filter with $\lambda_{cut} = 400 \text{ nm};$
- Wavelength Shifter plate (WLS), with
 - $\lambda_{emission} = 430$ nm;
- Reflective layer.

SiPMs are mounted in groups of six on Photosensor Mounting Boards (PMBs).

● S S G1 A1 A2 A3 S4 A4 A5 A6 K 53 6 6

Each X-ARAPUCA contains 48 SiPMs electrically connected in parallel, whose output signals are collected by a front-end electronics (**DAPHNE** boards).

Each Photon Detection module consists of 4 X-ARAPUCA, $[209 \times 12 \times 2]$ cm³.

Silicon Photon Multiplier

ProtoDUNE-HD

The **SiPM** is a 2-D array of SPADs, connected in parallel and joined together on a common silicon substrate. SPADs are **Avalanche photodiodes** working in Geiger mode, i.e. PN junctions polarized above the breakdown voltage.

Main SiPM parameters are:

- Breakdown voltage (V_{bd}) ;
- Photon detection efficiency (*PDE*);
- Dark count rate (*DCR*).

When a photon hits a SPAD, a selfsustaining avalanche starts. It is then quenched by a quenching circuit, in series. The SiPM output signal is proportional to the number of fired SPADs.

ProtoDUNE-HD tests the DUNE FD-HD components at real scale. It was constructed and operated in the **CERN** North Area during summer **2024**. It was exposed to e^{\pm} , μ^{\pm} , p and K[±] beams for 10 weeks, collecting about 30M events.

It consists of two drift volumes, separated by a planar cathode, with a drift distance of 3.6 m.

- The charge signals are readout by two anode plane assemblies (APAs) facing the cathode on each side.
- The scintillation light signals are detected using 160 X-ARAPUCAs. Different modules were tested, using FBK or HPK SiPMs and different WLS plates.

ProtoDUNE-HD SiPM IV curves

It is important to monitor the ProtoDUNE-HD PDS performances, during its operation. To do this, the main parameters are periodically measured and compared with results previously obtained in laboratory. The operation voltage is then adjusted to ensure a uniform PDE across all channels.

The DAPHNE boards allow to perform IV scans, in order to compute the SiPM V_{bd} . The voltage is supplied in two stages, *bias* (steps of ~ 0.7 V) and *trim* (negative steps of ~ 1 mV). The acquired IV curve is related to a daphne channel, i.e. an X-ARAPUCA module containing 48 SiPMs. The **breakdown voltage** can be computed as the maximum of the normalized first derivative of the reverse IV curve.

Vbd monitoring

Breakdown voltage is constant in **time**:

- For FBK, $\overline{V_{bd}} = (27.5 \pm 0.2) V$
- For HPK, $\overline{V_{bd}} = (42.1 \pm 0.3) V$

Measured V_{bd} are compared with LN_2 test results. A LAr - LN_2 Vbd difference is expected due to different temperatures.

Endpoint_Channe

•••

- A bias scan up to a fixed voltage limit is performed;
- The last bias point is taken as V_{bd} bias component and starting point for trim scan;
- The trim IV curve is analyzed and a parabolic fit of the trim first normalized derivative is done, to obtain V_{bd} trim component.
- By combing bias and trim info, the channel V_{bd} value is evaluated.

ProtoDUNE-HD PDS IV status

- 144 channels with good IV curve;
- 6 channels with noisy IV curve, working well;
- 6 **dead channels**, disconnected from the beginning;
- 4 channels with steep IV curve, that results in improper V_{bd} estimation which leads to a channel underbiasing (3 channels were recovered through an additional overvoltage).

107-17 10 107-0 1	05-24 05-12 07-15 07-2	105-23 105-15 107-12 107-5	105-21 105-17 107-10 +2.0V 107-7	109-17 109-11 109-47 109-41	109-13 109-13 109-45 109-43	109-12 109-14 109-42 109-44	109-10 109-16 109-40 109-46	111-10 111-26 111-40 111-27	111-12 111-24 111-42 111-25	111-15 111-23 111-45 111-22	111-17 111-21 111-47 111-20	112-26 112-37 112-31 112-40	112-24 112-35 112-33 +0.86V 112-42	112-23 112-32 112-34 112-45	112-21 112-30 112-36 112-47
107-17 10	05-24 05-12 07-15	105-23 105-15 107-12	105-21 105-17 107-10 +2.0V	109-17 109-11 109-47	109-13 109-13 109-45	109-12 109-14 109-42	109-10 109-16 109-40	111-10 111-26 111-40	111-12 111-24 111-42	111-15 111-23 111-45	111-17 111-21 111-47	112-26 112-37 112-31	112-24 112-35 112-33 +0.86V	112-23 112-32 112-34	112-21 112-30 112-36
	05-24	105-23	105-21	109-17	109-13	109-12	109-10	111-10	111-12	111-15	111-17	112-26	112-24	112-23	112-21
105-10 10	JS-24	105-23	105-21	109-17	109-15	109-12	109-10	111-10	111-12	111-15	111-17	112-26	112-24	112-23	112-21
105-26 10	15 0 4	105 22	105 21	100.17	100 15	100.12	100.10	111 10	111 12	111 15			112.24	112.22	110.01
105-1 1	.05-3	105-4	105-6	109-1	109-3	109-4	109-6	111-16	111-14	111-13	111-11	112-27	112-25	112-22 +0.6V	112-20
105-7 1	.05-5	105-2	105-0	109-7	109-5	109-2	109-0	111-41	111-43	111-44	111-46	113-0	113-2	113-5	113-7
104-11 10	04-13	104-14	104-16	109-31	109-33	109-34	109-36	111-37	111-35	111-32	111-30	112-16	112-14*	112-13	112-11
104-17 10	04-15	104-12	104-10	109-37	109-35	109-32	109-30	111-0	111-2	111-5	111-7	112-10	112-12	112-15	112-17
104-1 1	.04-3	104-4	104-6	109-21	109-23	109-24	109-26	111-36	111-34	111-33	111-31	112-6	112-4	112-3	112-1
104-7 1	.04-5	104-2	104-0	109-27	109-25	109-22	109-20	111-1	111-3	111-4	111-6	112-0	112-2	112-5	112-7

SoUP 2024, Bertinoro, Italy