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UPSCALING PERFORMANCE TEST
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First test: SS cylinder with 22 cm diameter.

* Dual-sided copper coated SS foil: 50 pm thick SS foil coated on both sides.

* Samples show high resistance to mechanical stress and temperature
shocks in liquid nitrogen.

Sample will be }4 }4

Upcoming performance test in GXe

0.7 m? of dual-sided copper coated SS
foil will be introduced into the GXe
system.

e Two vessels: one blank with uncoated
SS foil and one with coated sample.
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the chemical purity of xenon.
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