The Gd-loaded Neutron Veto of XENONnT experiment

Emanuele Angelino on behalf of XENON collaboration

emanuele.angelino@lngs.infn.it

The XENON Project

XENON10	XENON100	XENONIT	XENONnT
25 kg	161 kg	3.2 t	8.5 t
2005	2008	2016	

Direct search for dark matter with **liquid xenon** (LXe) deep underground at Laboratori Nazionali del Gran Sasso, Italy.

5.9 t active target mass, 8.5 t total mass 1.5 m drift length, 1.3 m diameter 494 Hamamatsu 3" PMTs TPC

Dual phase Xe Time Projection Chamber

(Gd-)Water Cherenkov Neutron Veto High reflectivity expanded PTFE 33 m³ volume around cryostat 120 8" high QE PMTs nVeto

(Gd-)Water Cherenkov Muon Veto **700 t** water, **84** 8" high QE **PMTs**

The XENONnT Neutron Veto

Neutrons emitted from **materials** (radiogenic) scatter off LXe atoms in **TPC**, inducing **Nuclear Recoils** (NR), like Weakly Interacting Massive Particle (WIMPs).

Neutron capture on H or Gd nuclei, with emission of ~ MeV photons.

Neutron Veto (NV) designed for otherwise irreducible background

Photons make **Compton scattering** off **electrons**, which emit **Cherenkov** light, detected by **PhotoMultiplier Tubes** (PMTs).

Neutron Background

interaction Neutrons second tagged observed, otherwise indistinguishable from WIMPs. With new reduction techniques, electronic recoil (ER) background comparable to **neutrons** in **signal- like** region.

nal	Best fit	
ROI	Signal-like	
	nal ROI	

Active veto against muon-induced **neutrons** (n)

Passive veto against **y** and **n** from **natural** radioactivity **mVeto** Large light collection efficiency with high-reflectivity **ePTFE** (expanded Polytetrafluoroethylene).

> First Science Run (SRO) with demineralized water in Water Tank (WT)

ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16
CEVNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4_{-0.8}^{+0.9}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total background	154	152 ± 12	$2.03\substack{+0.17 \\ -0.15}$
WIMP		2.6	1.3
Observed		152	3

Neutron calibration with AmBe

AmBe source close to cryostat (**same signature** of radiogenic **neutrons**):

• **4.4 MeV** gamma (γ) emission with neutron in about 50% of cases

• First 4.4 MeV γ detected in NV, then coincidence requirement for **NR** in **TPC**, hence search for **signals** from neutron capture in NV

Neutron tagging efficiency: (68 ± 3) % with 600 µs window at **5-fold** coincidence. **5 PE**

104 -					
10	Average	captu	ire time i	n	
10 ³	demi-w	ater of	about 18	30 µs	
102		l	ha.		XENON
-			Why		Preliminary

Gadolinium-water Purification System

	Neutron capture cross-section	γ energy	Mean capture time
н	0.33 b	Single γ, 2.2 MeV	200 us
Gd	49000 b	3-4 γ, 8 MeV in total	75 us

Novel Gd-Water Purification System (GdWPS) to keep good water conditions developed (EGADS technology) and procedure for insertion of **Gd-sulfate (GdSO) tested** in Science Run 2

Gd-water in Neutron Veto

AmBe source far from cryostat (50 cm) to monitor NV response along time, area spectrum given by:

- 2.2 MeV peak (H capture) 1 Gaussian with threshold
- 4.4 MeV peak (¹²C de-excitation) → 1 Gaussian with threshold
- About 8 MeV peak (Gd capture) → 2 Gaussians with threshold
- High energy tail (higher level ¹²C de-excitations or n captures on ⁵⁶Fe) → 2 Gaussians

Mean area and amplitude correspond to mean collected light (> NV optical properties) and neutron captures.

- Highest neutron detection efficiency measured in a water **Cherenkov** detector
- In Science Run 0, **time window** of **250 µs** to **reduce** induced dead-time:
- → (53 ± 3) % tagging efficiency with 1.6% livetime loss

Gadolinium Sulfate Octahydrate (Gd₂(SO₂)₃ ·8H₂O) **injected** into **WT** through GdWPS in various steps Reached 0.02% Gd mass concentration with to 350 kg of GdSO (500 ppm GdSO)

Gd-water in Neutron Veto

Mean collected light, monitored with periodic calibrations, reduced by 20% (→ **4% less H** captures)

...

kg kg

1.5 2.5 12.5 32.5

40%

20%

0% - • •

Neutron tagging efficiency with **Gd-water**

AmBe source close to cryostat (~1 cm):

- Neutron **capture time** and spectrum estimated NV events using following 4.4 MeV signals from AmBe.
- At 500 ppm GdSO, average

250

25

Future perspective

- Planned **XENONnT** nVeto with **3.5 t** of **GdSO** (**0.2 % Gd** mass concentration), with tagging efficiency at 87%
- Neutron background will be further reduced by factor 3 wrt to SR0
- **Gd-loaded water** technology can be effectively **employed**

for **next-generation** LXe detector

Dual-phase Xe TPC with ~60 t of active **LXe**, from the joint efforts of **XENON**, **LZ** and **DARWIN** into **XLZD consortium**.

Neutron background reduction crucial for a multi-purpose observatory for dark matter, neutrino and rare events.

SOUP 2024 - INFN School on Underground Physics

XENON

Preliminary

.......

0 10 20 30 50 60 50 60 90 90 10 10 10 10 10 10 20 200 210

Days since first Gd insertion

