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Statistics and Inference

for rare event searches

What is a statistical model?
Does it describe your data?

What kinds of conclusions can we draw?
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GOALS!

This course should

=

teach you:

e To construct a statistical
model for your experiment

e To consider how to test
whether your data is
compatible with your
statistical model

e To use your statistical model
make statements about
physics

e And to interpret others’
statements



Structure

Three lectures and
exercise sessions

e TUE 1645-1830
e Introduction
e Hypothesis Testing
e Goodness of Fit
e WED 1115-1300
e Example analyses
e Profile Likelihood
e Asymptotic distributions
e [ook-Elsewhere effect
e THUR 1645-1830
e Confidence Interval construction
e Nonasymptotics
e Bayesian credible intervals
e Unfolding

e Tools



Resources

OXFORD SCIENCE PUBLICATIONS

STATISTICAL
DATA
ANALYSIS

GLEN COWAN

How good are your fits? Unbinned multivariate

goodness-of-fit tests in high energy physics. 1 006 301 9

Mike Williams

1ep-ex] 16 Aug 2010

(p.d.f.) to the data. This paper explores a variety of unt

PRINCETON SERIES IN MODERN OBSERVATIONAL ASTRONOMY

Frederick James

Statistical Methods in
Experimental Physics

2nd Edition

A Practical Python Guide for the Analysis of Survey Data

\\ World Scientific Zeljko Ivezi¢, Andrew J. Connolly,
Jacob T. VanderPlas & Alexander Gray

https://arxiv.org/pdf/

- useful to think about
the goodness-of -fit
challenge


https://arxiv.org/pdf/1006.3019
https://arxiv.org/pdf/1006.3019

Notaon SRR

ki fo(Tow Frederick James’ Statistical Methods

e Arandom variable, or several are X, X, X

e The probability of an event A is P(A)

e Parameters of a model are 6

e Conditional probabilities are P(A | B)

e The likelihood is (@ | X) = P(X | 0)

e Expectation value(s) for counting experiments are u, i
e Expectation values, variance E(X), V(X)

e best-fit parameters or point estimates are 0



Observed data is random variables so& B2,

or is it are

* Our measured data 1s a result of processes both
truly and practically random (e.g. quantum
processes, me reading a ruler crooked)

* |n some cases, the data itself 1s close to what we
wish to measure, and we hardly think of ourselves
doing statistics

 However, in particular when looking for small or
subtle effects, the random noise may be significant,
and the relationship between physics parameters

and the measured quantity less straightforward R R RN '

e You’ll need to make a statistical model for how
your data came to be,

MM
10 20 30 40 SO 60 70 80 90 100 110 120 130 140 150 160 170 180 190

6

e And methods to make sound conclusions



Test statistics are functions of your observations So%p 24

e Any function of your observed data will be a
random variable

e By using the right function, we can gather all
the information gathered into one number

e E.g. estimators (§) which directly give a
measurement of some parameter

e The tricky part will most often be to

e choose the function to give the most
information from the data, and

e Understand the distribution of the test
statistic



Probability distributions/densities so&r 2,

e 1f X 1s a continuous
variable, we may define a

X) =Lim._oPxy < X <xy+e€)le
probability density function (X) -0l (X 0 )

(PDF) to describe the
distribution

X
F(X) = J FfX)dX

e The cumulative density
function (CDF), F(X), is
often also useful

e and its inverse! P(X, < X < X)) =F(X)) — F(Xy)



Expectation values, variance

Useful Summaries of location: E(X) = J X - f(X)dX

and spread: V(X) = J (X — E(X))? - AX)dX

— Qo0

Linear: E(a - y(X) + b - 2(X)) = a - E(v(X)) + b - E(z(X))

If x; are identically distributed independent random variables:

1
the mean estimator i = N Z X;, has the correct expectation

l

E(f) = E(X)

A Zi ('xi _ /:l\)z

as doers the variance estimator 6% = N1

LE(6?) = V(X)




Any number of distributions!

If we are certain about the outcome, 18
it really an experiment?

Depending on what you measure, your
distributions may be as simple or as
complicated as can be imagined

However, for many problems, physical
considerations or your experience may
lead you to have a look at some of the
most common ones used— they are
useful building blocks!

Some (student T, F-test, y?) are also
useful because they describe the
behaviour of some useful test statistics
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The Poisson distribution Sop 24

T
P(N) =
N!
e If you count events that
happen 1n a certain period,
you’ll end up with a Poisson
distribution o o u=01
. 123
: o u=2.
e Expectation value and ® u=50
variance are both u 0.6
} 0.4 4 ° °
0.0—0.0:0:80::800
(I) :i. é :I% 4 é (IS 7 8 é 1I0 1I1 1I2
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Bi/multi-nomial distributions

e If we count how many times 7 PO . Eii;f%i’il
cach of a finite set of outcomes 030
happens, we get the multinomial 025 e
distribution .+ 020- . e
e M total tries, n; events in each T
category, with probability p; 005 .
0.00 1 S o § o ¢ ¢ o o

7 8 9 10 11 12

Zo4{ 0 o

e And if the number of possible
outcomes k = 2, we get the
Binomial distribution

e Examples: Histogram bin counts,
classification

12



Uniform distributions Sowrp )

1
e Turns up in e.g. FX) = < ——ifa <X <D
e 0 else
e Spatial distribution of dark matter \
events?

e But more importantly, it is often very
often useful to convert another
distribution into a uniform distribution

(Y here) between 0 and 1

© © I =
IS o © o
1 1

Probability Density

©
[N}

Y(X) = /_ F(X")dX'

o
o

-0.50 —-0.25 0.00 025 050 075 100 4& 150
X



The Gaussian distribution

The incfustry c[efau[t. AKA bell curve, normal distribution

fX) = - g2
e The Gaussian distribution is the limit vV 2ro?
of sums of random numbers with -
finite mean and variance— the Central N — =001

Limit Theorem

o
w
<)

e E.g. — diffusion!

N
w
1

Probability Density

o o o
N
o

e For this reason, it is often the
“default” assumption for a continuous 010
distribution 005

4 2 0 2 4

e However, by using this (or many other
analytical distributions) you may be
assuming to know the behaviour for
even very extreme outliers

Dow Jones closing price

o

=} =}
S S
S [r— O
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The )(z-distribution

e The sum of the square of v standard
normal distributed numbers is
distributed according to the y?
-distribution

o We’ll see later that this means that
you’ll encounter this distribution
frequently when computing
confidence intervals
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Histograms as distribution estimates sor Y,

§ @
\‘:&\\} N

e If you wish to characterise the
distribution of, for example, the
distribution of energy deposited
by electrons and photons in a
calorimeter, or the total path
length of all tracks, you may never Figure 1 Eletromagetic skhover in calormetr induced by photon
find an analytical estimate

0.035

. . . . | [ ‘Electrc;ns 206 MeV
e Higher dimensionality can 0030 EEm Photons 100 MeV |

challenge this approach 002s |

0.020

counts

e and you’ll need to check you have
enough samples or include the
uncertainty
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https://doi.org/10.1016/0010-4655(93)90005-W
https://doi.org/10.1016/0010-4655(93)90005-W

Technical aside 1: Shape and Rate? soer Y

e When using histograms to
estimate the distribution,
nuisance parameters are well-
named

* To have a continuous nuisance
parameter, “template
morphing'-- linear interpolation
between some points in
parameter space 1s often used

* Since this i1s computationally
tricky, there will often be a
divide between "rate
parameters”’-- those that only
affect expectation values, and
therefore are “easy” and "shape
parameters”— those that
require modifying the PDF of
one or more signal/background
model

Mismodelling
term

Recombination
Fluctuation

Photon
Yield

T 3
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e Another method to estimate
densities, or too make a
distribution estimate smoother
is to use a kernel density
estimate— adding a kernel, a
PDF centred on each event in
the sample

e To choose the width of this
kernel, you may have to
split your dataset in a fit and
validation dataset

e If your distribution has sharp
edges, or areas with very
dissimilar densities, you may
wish to use an adaptive KDE

Probability Density
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scikit-learn provides

extensive KDE functionality

1.00
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Frequentist interpretation of probability so&r 24

e The frequentist interpretation of probability 1s
the relative frequency of some outcome in the
limit of infinite number of repetitions

e This limit needs only be in principle— valid
frequentist inference can occur for a single
experiment as long as that experiment is
repeatable

¢ Views the data as random outcomes of fixed
processes

e In some sense— a very particle physics way
of looking at the world

e Dominant in particle physics
19



Hypothesis testing soor B2

0.5

0.4
e Frequentist hypothesis testing:
make a decision between the
two alternatives

o
w

Probability Density

o
N

e You get to choose:

e What test statistic you use to 0.11
separate the two hypotheses!

e And, the decision boundary,

either explicitly

e Or impli.citly by . P(accept HO) |P(accept H1)
demanghpg a ceﬁa1n HO is true 1-a a (test size)
probability to reject H, H1 is true B 1-B (power)

20



Test Statistics

e From the collected data, we wish to .0 .
find a function of the data that y . *
expresses a direction or ordering of oo
the data in a more HO or H1 ©
direction o

e Typical examples; mean, median X
etc. 0.5

e For the example to the right, y
would be a poor test statistic if we
wish to distinguish the two, x
would be better, and a combination
would provide very good separation




What is a p-value?

» Since we want to use the best test statistic for
each case, we could have many ways of
measuring agreement with a hypothesis

e However, we can transform all our rulers into
the same space by using p-values, which
works with the integral of the distribution of T

00
e all p-values are between 0 and 1, and are
defined by deciding on: P (Tobs) — f (T | H())dT
T
e a test statistic obs

* and a decision of what direction that test
statistic expresses more tension with H,,

e Under Hy, p 1s uniformly distributed between
0 and 1

22



p-values are the probability to observe a dataset
equally or more extreme® than the one observed,
given a certain (null) hypothesis

*ordering by a test statistic**

**usually chosen to separate the null and alternative hypothesis as well as
possible

23



“Counting Sigmas”

[P YV VIWHWII Wi WA I IWWMH W MWW TTINI WA IIIW MW WI W W I IVAW W W A aw e il hht bt/ /Rl U R U AL A A AL A i il o

This observation, which has a significance of 5.9 standard deviations, corresponding to a background
fluctuation probability of 1.7 x 1072, is compatible with the production and decay of the Standard Model

Higgs boson.
N =o7'(1-p)

* As a yardstick for p- 05 - 10°
values, you can often see :
“sigmas”, or o (or Z- £ 1071
score) used. 0.4 - :

- 1072

e “Five sigma”, or 3 x 107’ f
is the “standard” for 0.3 103
discovery o 5 3

L 10-4 2
e Though you should 0.2 1 0
consider what is the .
appropriate threshold F 10
in your field 0.11 [
L1076

* Be wary that you often i
also see the 2-sided 0.0+ " - T T . r 107
version! X [or o]

24



Search Degree of Impact LEE Systematics | Number
surprise of o
Higgs search Medium Very high Mass Medium 5
Single top No Low No No 3
SUSY Yes Very high Very large Yes 7
By oscillations Medium /low Medium Am No 4
Neutrino oscillations Medium High sin?(20), Am? No 4
By — pp No Low/Medium No Medium 3
Pentaquark Yes High /very high | M, decay mode Medium 7
(9 — 2), anomaly Yes High No Yes 4
H spin # 0 Yes High No Medium 5
4th generation g, 1, v Yes High M, mode No 6
VvV, > ¢ Enormous Enormous No Yes >8
Dark matter (direct) Medium High Medium Yes 5
Dark energy Yes Very high Strength Yes 5
Grav waves No High Enormous Yes 7

Table 1: Summary of some searches for new phenomena, with suggested nu-
merical values for the number of o that might be appropriate for claiming a

discovery.

https://arxiv.org/abs/

1310.1284, Louis Lyons
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* A very useful test statistic 1s likelthoods—
the probability of the data given a model

e Likelihoods are central to most of both
Bayesian and Frequentist methods

* As an example, the likelihood as a
function of expected events for a counting
experiment that sees 3 events is:

e We often deal with independent events
(e.g. number of events in different
histogram bins); we can build up a total
likelihood by multiplying (or, using
logarithms, adding) terms

o The well-loved y’-statistic is what you
get 1f you combine Gaussian likelihood
terms

The Likelihood Soerp 24

L = P(data|H)

L(pu|N = 3) = Poisson(N = 3|u)

i)

=

E(ﬁ\ﬁ) — H Poisson (V|

log(L (|, 0))

log(Gaussian(x;|u, o))

S.M

Z((% ;.2M)2) + K



The Neyman-Pearson Lemma

o IFF H, and H, are completely
specified, the likelihood ratio
between the two turns out to be
the solution to the test statistic
problem— it is the uniformly
most powerful test.

e For example, the plot to the right
shows the NP ratio between two
Gaussian hypotheses, one with

u,0=0,1 and one 1,2.

| _ 2y

 L(Hp)




Profiling Likelihoods

6_'—' Profiled log-likelirood D
= upper limit
Shree best-fit —
S > 90% exclusion |
e We seldom have completely R =
specified hypotheses ’ 7
1 —
. : | | L |
e Our background and signal models T T
have uncertainties, parameterised by
° 1 1 1 LI I I B | 1 1 1 LI
nuisance parameters (theta below) . Profiled nuisance parameter
: S | e best-fit
e Unlike the Neyman-Pearson case, we g .- uover limi |
St 9 pper limit .
are not guaranteed that this is the best 2 toyMC uncertainty band
possible test, but it very often = around best-fit 5
performs well. goop
e |
88 i
— 0.85 .
& |
1 l 1 L1 1 1 ll 1 1 1 l: 1
0 g-48 le-47

)\(5) — —9. (lOg(ﬁ(S, 6))) o lOg(C(é, é))) WIMP-nucleon Cross—sectionzgcmz]



Follow-up question:

What parameters may be ignored?

400

TS T ¥
Alternate p-value eee @ @
375 - if Qy,Ly are set to +2 sigma values 'i ee 2
Alternate p-value i ve e
3.50 - if Qy,Ly are fit incl. measurement constraints

e We are rarely (never) able to include
every possible uncertainty in our
inference frameworks

w
N
wu

Alternate sigma
W
o
(=]

. . 2.75 -
e And it is not likely that every
parameter 1s important 250 -
. . 2.25 -
e Need ways to decide which parameters
< 2.00 ] ] ] ] ] L 1
are unimportant enough 200 225 250 275 300 325 350 375 400
sigma when Qy,Ly are fixed to true values
° TO m kn()Wled e no Standards or Limit change by fixing NR nuisance parameters
y g 30 ‘ usmg SRO constralnt term
consistency in how these questions are 100 toyMC,
treated. 25t o Nimpmass < s0Gev |

e To the right, two toy investigations in
XENONIT— signal shape parameters
often have very little impact on
confidence intervals

counts

1.00 1.02 1.04 1.06 1.08
Ratio of Upper limit with free and nominal NR nuisance parameters

E. Aprile et. al (XENON). Search for Coherent Elastic Scattering of Solar 8B Neutrinos in the
XENON1T Dark Matter Experiment. Phys. Rev. Lett., 126:091301, 2021. doi: 10.1103/
PhysRevLett.126.091301.

E. Aprile et. al (XENON). Dark Matter Search Results from a One Ton-Year Exposure of

XENONTT. Phys. Rev. Lett., 121(11):111302, 2018. doi: 10.1103/Phys- RevLett.121.111302.



Estimators

e Estimators are test statistics we wish to use to
understand some physical parameter.

e The ideal estimator has zero bias (E(é) = 0) and as low
variance as possible

e And most importantly, that it is consistent— that it
converges to the true value with increasing
observations

e A simple method to construct an estimator is to compute
the expected mean or higher moments of the
distribution, and invert that expression

e The maximum likelihood will, in the limit of a large N — -
sample be 1deal: 1t is consistent, and 1s asymptotically 5|Ogg(a)/69j = 0;
normally distributed with the minimal possible variance

30



From the earliest days of statistics,
statisticians have begun their analysis by
proposing a distribution for their observations,
and then, perhaps with somewhat less
enthusiasm, have checked whether this
distribution is true

- Ralph B. D'Angostino and Michael A. Stephens, Goodness-of-Fit
Techniques, 1986

31



Goodness-of-Fit (GOF)

e The conclusions we draw from our data
depends on our statistical model

* Unless we have a strong physical argument
for a certain distribution to hold (e.g. Poission
for counting events) we should probe the
correctness of our model or fit to the data

e Unlike other hypothesis testing, GOF tests
must consider every possible other alternative
as a competitor to the model we test

* The conclusion to a failed goodness-of-fit test
may therefore sometimes just be “worry
more”

“l am powerful. And | am only the most
lowly gatekeeper. But from room to
room stand gatekeepers, each more

powerful than the other. | can’t endure

even one glimpse of the thirg,”



A=) (- EX))/o?

The sum of v standard normal-distributed
numbers is )(3 DOF—distributed

U ~ number of observations -
number of fitted parameters

e [fthere are errors in both x and y, you may 7o

Often encountered fitting curves

----- X*Fit +10
transform it into an effective total erroron |  Ffewtee =
y E 500 F\\ 'L"‘\}\Pﬁ W N
. . S Sty
or histograms with large enough counts that 3o i
they approach a Gaussian saol e
5 200} "";;
If one or more parameters are fit, the g1 = (01367 20.0010) PE/ph g
effective number of degrees of freedom is _ toop 0= (0% =0ABERE
o . -
reduced accordingly (this assumes that the & 2
parameters are independent) % Of-mmnnn 1” --------------------------- oo
= -20}
é 6.0 6?5 7j0 7‘5 81.0 83')3 9.0

Light Yield [PE/keV]



KS and AD

e Kolmogorov-Smirnov and Anderson-
Darling are two tests that rely on
comparing the Empirical Distribution
Function (the cumulative fraction of
events) and the tested distribution

e Useful since no binning 1s assumed

e The KS test considers the maximal
distance between the two, and manages

to be distribution-free— the distribution
of the test statistic does not depend on F

e Alternatives include the Crameér-von
Mises test, which 1s also distribution-
free and Anderson-Darling which is not

W2

o
o]
III|III|III|III|III|I

Dy = max| EDF(X) — F(X)|

[ (EDF(X) — F(X))*f(¥)dX



Other alternatives exist!

4x10° &
e Ideally, you should consider what sorts 3x10° .
of mismodelling you are most worried g
about and choose goodness-of-fit tests to . 2«1 —_—
target these with the most power (ot &, . )
e Often, a projection on the dimension . .a‘:
you care about will be a good start - - p" - -

e Some neat ideas exist to try to tackle
high dimensionality by considering an

analogue of electrostatic energy between 8. CONCLUSIONS

pOiIlt clouds e This “g.o.f.” method is fatally flawed in the un-
binned case. Don’t use it. Complain when you
. . . . see it used.
° .
One Cauthn. the hkethOd 1tself may e With fixed p.d.f.’s, the method suffers from test
Secm temptlng, but turns out to be a poor bias, and is not invariant with respect to change
GOF test statistic

https://arxiv.org/abs/physics/0310167



e Many event selections may

be considered goodness-of-
fit tests— asking whether
they are compatible with
coming from a signal

Others are more standard
hypothesis tests, if the
background model 1s
specified

But we often define some
cuts first and only model
what remains!

Cuts are often GO tests!

Events are required to pass
a range of quality cuts:

The S1and S2 peak
should each have
patterns, top/bottom
ratios etc. consistent

with real events

An S2 width consistent
with the expected
diffusion

An S2 over 500 PE

Not within < 300 7ns of a
neutron veto event

Events must be within ER
band

Fiducial volume cut selects
a mass of (4.37 £ 0.14) tonnes
with low backgrounds

Detection .
l Selection

Total

1 10 10?
Energy [keV]

ER data « Data outside FV
+ ERdata<10 keV

—100 5 s

—120F 7

EEPT) SUSESSEREEE e

~16002030 20 50 63

D laml
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What are Toy Monte-Carlo methods? sos»

e What 1s the area of a circle?

e Or, often equally importantl
— what 1s the distribution o
our estimate for , or any
other test statistic you can
imagine?

e In this case you can figure
out the distribution,

e But for many more
complicated cases, you may
either rely on approximations
or simulated results

37




log10(cs2)

Searching for rare events is
a matter of luck:

p-value = 0.192

csi

er SR1
wimp
ac_SR1
cnns_SR1
radiogenic
wall SR1

Events with PDF_wimp/total>0.20
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log10(cs2)

Searching for rare events is
a matter of luck:

p-value = 0.188

csi

er SR1
wimp
ac_SR1
cnns_SR1
radiogenic
wall SR1

Events with PDF_wimp/total>0.20
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log10(cs2)

Searching for rare events is
a matter of luck:

p-value = 0.009

csi

er SR1
wimp
ac_SR1
cnns_SR1
radiogenic
wall SR1

Events with PDF_wimp/total>0.20
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Questions?

Introduction to statistics

e We model our observations with a
statistical model, usually in terms of
probability distributions.

e We choose test statistics that distil
the information we wish to learn
from the data

e and often formulate questions in
terms of hypothesis tests— given
the data, should we favour one or
the other?

e A particularly important hypothesis
test 1s whether your data agrees with
the distribution you use!

41
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mailto:fysikk@dundasmora.no

Summary of first topic

e We model our observations with a
statistical model, usually in terms of
probability distributions.

e We choose test statistics that distil
the information we wish to learn
from the data

e and often formulate questions in
terms of hypothesis tests— given
the data, should we favour one or
the other?

e A particularly important hypothesis
test 1s whether your data agrees with
the distribution you use!

43



For today

e Example analyses
e Profile Likelihood
e Asymptotic distributions

e [ ook-Elsewhere effect

44



Profiling Likelihoods & nuisance parameters s&»p 24

e We seldom have completely specified
hypotheses 600

&
o
s L
~ [=-] =}

e QOur background and signal models 250 |
have uncertainties, parameterised by

nuisance parameters (0)— you’ll see ‘
some examples in the next slides. o -

e The global best fit we denote with 5,0 9]
0 20 40 60 80 100 120 140 160 180 200
Signal Expectation

£
o
(=2}

o

ER Expectation
% &
(=)
-Log likelihood ratio

(== S . F B VYR - |

e However, we also want to test other s
— for example s=0 for discovery
significance or a range of s for
confidence intervals. A

5logZ (s, 0)180; = 0;

e In these cases, we set the other
nuisance parameters to their

conditional best-fit 6.
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The likelihood relies on the
model

e The validity of the inference relies on
the underlying model

e The signal model may be quite
forgiving— if an excess 1s 10-20
events, far tails are less significant

* Experiments typically include
uncertainties on background rates, but
not always on the distribution used.

e XENONIT added a “signal-like”
background shape to its ER
background model to lower the
chance of overconstraining the model.

e For XENONNT, this was replaced by
a more careful selection of nuisance
parameter directions, and a stronger
focus on pre-defined goodness-of-fit
tests chosen for their power to
discover mismodelling

Mismodelling Term, 10 <c¢S1< 20

A mismodelling

2.8 3.0
logi0(cs2pottom/(1pe))

3.2

N. Priel et al. A model independent safeguard against background
mismodeling for statistical inference. 2017(05):013-013, may 2017.
doi: 10.1088/1475-7516/2017/05/0183.

Preliminar

Binned Poisson y? p-value = 0.42

cS1 [PE]

Local o-deviation from i, =29.3 counts

--
.-l"
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Counting Experiments

* “qust” counting events— but the
estimate of the background rate
and acceptance can be as
complicated as anything

e [f there 1s no signal/background
overlap or complete overlap, this
may be the optimal sensitivity

e Otherwise, 1t might still be a
worthwhile compromise if
you’re worried about whether
you can model your background
correctly

0.
0.
0.7f
0.6F
0.5H
0.4f
0.3
0.2f
0.1

o

Energy [keVir]
60 80 100 120 140 160 180 200

50 100 150 200 250 300 350 400 450
S1 [PE]

DarkSide-50 532-day https://
arxiv.org/pdf/1802.07198

gsc:l(s S 919) —

POiSSOH( sci | Mb(eb) + /’ls(S S eb))
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However, shapes often matter

wall

er

neutron
cevns_atm
neutronx
ac
ac_nodisc
cevns

No Discrimination

XENONI1T ER

0.4 0.6
Fraction of signal included

Background Expectation

er

ac

ac_nodisc
neutronx

neutron
cevns_atm

No Discrimination
XENONIT ER

0.4 0.6
Fraction of signal included

48



Event Map

On-Off likelihoods Q) 1

30

- =25

—-30 i 120
Y ‘H— On Region | {15
- , 110
e WIMP searches rarely get to P 18
. 8 n oy tL Lo
turn off their signal Observation’

Positions

completely

22h02m 21h58m 21h55m
(R0 o 2R e P . ] R Pl o M i

e Directional dark matter
searches and some axion
searches, on the other hand
can take representative data in
a no/low signal and high
signal state

¢ Also common in indirect A sc1(S g9 9[9) —
detection

Poisson(V,; I//tb(ﬁb) o= ,MS(S ‘919)) X
Poisson(N_,; | a X //tb(eb))




Binned Likelihood P

—— DM-n 3 GeV/c?

= DM-e 200 MeV/c*(Fpy=1)

= DM-e 200 MeV/c?(Fpy~1/q?)
E' cut( data

e With more than ~ 5 events
in each bin, you can use
computationally efficient
methods to compute test
statistic distributions

—
—
<
O
.
QO
=
s
O
=
83
A
)
po—
~
(75
s
a
O
>
)
—
O
s
<
a2

e FEases visualisation and
goodness-of-fit

e And simpler to share results

S2 width[us]

e Minimal sensitivity loss if the
bin width 1s small compared 60 80 100 120 140 160 180 200
to the detector resolution S2 [PE]

PandaX ionisation-only search, https://
arxiv.org/abs/2212.10067

gsoi(sa 5;’ 5[9) H [POISSOH(N |:ub l(eb) + :us l(S s Qb))

i=1
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https://arxiv.org/abs/2212.10067
https://arxiv.org/abs/2212.10067

5

Unbinned (extended)
likelihood

sci

BN ER B Wall

If the events are too few to fill
bins, the unbinned likelihood
promises the best performance

Might still have to rely on
binned methods for goodness-
of-fit

if you rely on Monte Carlo
methods to generate

distributions, that can require 40 60 80 100
a lot of statistics and be harder cS1 [PE]
to validate XENONNT first WIMP search

N,

N

—_— o ) = — = //ls Ny — = l[/l S
(5, 0y, 0,) = Poisson(Nyg; | 45(0,) + p (s, 0,0, x | | £ s, 0,.6,) + ———f£,(%,16,)

- Mgt Hp Hs + Hp
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Likelihoods can be
composed 4 |

& ¥

g(s S ‘gb)Smence run — gsm(s gb) X 3 l(éb) X ganc(éb)

10 20 30 40 80 100
Number of Events csl [pel Nuisance Parameter

L(s, 6,0 )tot = Z(5, 0, O )rot X Z(5, 6,0, )tot X Lshared(®)
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A massive shortcut 9[ you're careﬁﬂ/ [ucéy @ Q

e The log-likelihood for a number e
of gaussian-distributed numbers

has the same form as the y?

-formula (WllkS’ theorem) ASYMPTOTIC: Sufficient data is observed.

INTERIOR: Only values of y and 6 which are far
from the boundaries of their parameter space are
™ admitted.

Necessary conditions for Wilks’ theorem

e [t turns out that if a set of
conditions that are quite often : - e ofth
. . . DENTIFIABLE: Different values o € parame-
fplﬁl.led, the (.11str1but10n of the ) ters specify distinct models.
likelithood ratio converges to a y

1stributi ; NESTED: Hj is a limiti f Hy, e.g. with
-distribution with some number of pasahmbngicase ottty e

some parameter fixed to a sub-range of the entire

free parameters parameter space.
. . . . CORRECT: The true model is specified either
e This can massively simplify your under Hy or under Hi.
computations, and so it 1s worth to
look through 1n detail
Z(s,8)

q(s) = =2 - log(———)
Z(5,5 https://arxiv.org/abs/1911.10237




As our example: the profile log-likelihood
ratio test for a counting experiment with a
known background but uncertain efficiency

Parameters:

e Signal s

o efficiency e

Fixed, known parameters:

e Background expectation b
e cfficiency uncertainty o,
Data:

e Number of events N

e cfficiency estimate e, .,

(L)(s,e) = Pois(N|s - e + b) X Gaus(e

f90

© O OO 0O 0O o oo
= N W P U &N 00
]

[y

Energy [keV,:]

20 40 60 80 100 120 140 160 1

(=)

........................
_______
-="
PR

MR B B A Lo b v v by v by v v by g gy |

o

50 100 150 200 250 300 350 40
S1 [PE]

meas | e’ Ge)
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Fraction of toy results below

10Y

Ho: N ~ Pois(s-e + b)
s=20.0

b=20.0 [fixed]

e ~Gaus(1.0,0.1)

L(s,e)=
Pois(N|s-e + b) %

Gaus(é|e, oe)

=
o
o

=
o
N

103

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Log-likelihood ratio testing Hy
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Asymptotic Distributions

What does “suﬁcientfy data” mean?

Necessary conditions for Wilks’ theorem
ASYMPTOTIC: Sufficient data is observed.

INTERIOR: Only values of u and 6 which are far

e Wilks’ theorem holds in the
asymptotic case of infinite data,

but convergence can often be
quick:

e Poisson counting with more
than ca. 10 events

e (Gaussian measurements

However, if you have an unbinned

likelihood, the important
consideration 1s signal-like

background events— for example

seen with 1Xe TPC searches

from the boundaries of their parameter space are
admitted.

IDENTIFIABLE: Different values of the parame-
ters specify distinct models.

NESTED: H) is a limiting case of H;, e.g. with
some parameter fixed to a sub-range of the entire
parameter space.

CORRECT: The true model is specified either
under Hy or under H;.

https://arxiv.org/abs/1911.10237



Fraction of toy results below

10Y

=
o
o

=
o
N

103

I
o

N ~ Pois(s-e + b)

s=0.0
b=0.2 [fixed]
e ~ Gaus(1.0,0.0)

L(s,e)=
Pois(N|s-e + b) %

Gaus(é|e, oe)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Log-likelihood ratio testing Hy
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Asymptotic Distributions

What does “interior of the parameter syace” mean?

Necessary conditions for Wilks’ theorem

e As a mental shortcut— if under
your null or signal hypothesis,
parameters sometimes or often goes
to a physical boundary, it will not
behave asymptotically

e This 1s very often the case e.g. 1f
you’re looking for a signal with
expectation value > 0O

e If you are testing the hypothesis that
the model that has the parameter at
the boundary— for example that the
signal 1s 0, you may be able to use

Chernoff's theorem if all other f (q)
conditions are met

ASYMPTOTIC: Sufficient data is observed.

INTERIOR: Only values of u and 6@ which are far
from the boundaries of their parameter space are

admitted.

IDENTIFIABLE: Different values of the parame-
ters specify distinct models.

NESTED: H) is a limiting case of H;, e.g. with
some parameter fixed to a sub-range of the entire
parameter space.

CORRECT: The true model is specified either
under Hy or under H;.

Chernoff 1 1 .
~ 5 bor—1+ 55(/0
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Fraction of toy results below

109

Ho:N ~ Pois(s-e + b)
s=0.0

b=40.0 [fixed]

e ~Gaus(1.0,0.1)

L(s,e)=
Pois(N|s-e + b) x

Gaus(e|e, oe)

=
o
o

=
o
N

1073

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Log-likelihood ratio testing Hy
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Fraction of toy results below

109

Ho:N ~ Pois(s-e + b)
s=0.0

b=100.0 [fixed]

e ~Gaus(1.0,1.0)

L(s,e)=
Pois(N|s-e + b) x

Gaus(e|e, oe)

=
o
o

=
o
N

1073

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Log-likelihood ratio testing Hy
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Asymptotic Distributions

What does it mean for parameters to be “idéntfﬁaﬁfe”?

Necessary conditions for Wilks’ theorem

. .
If the mOdel 15 degenerate fOI’ ASYMPTOTIC: Sufficient data is observed.

some parameter, the asymptotic

approximation will not hold INTERIOR: Only values of u and 6 which are far

from the boundaries of their parameter space are
admitted.

. .. . . Lol
This 1s qu1t¢ common 1 thSICS. IDENTIFIABLE: Different values of the parame-
When the signal strength 1s 0, the ters specify distinct models.

model does not depend on any NESTED: H) is a limiting case of H;, e.g. with

other signal parameter some parameter fixed to a sub-range of the entire
parameter space.
e This 1s another way of looking at CORRECT: The true model is specified either
the look-elsewhere effect, which under Ho or under Hi.

we’ll look at later
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Asymptotic Distributions

What does it mean for models to be “nested”?

Necessary conditions for Wilks’ theorem

e [f the model tested is not a limit of
the general hypothesis

e Such as when testing between
two disparate models

e Or 1f your theory features a non-
zero fixed signal you wish to test
against the no-signal hypothesis

e You can always linearly add the
two hypotheses’ models together
with a new parameter, but then you
introduce Non-identifiability at the
boundary!

ASYMPTOTIC: Sufficient data is observed.

INTERIOR: Only values of y and 6 which are far
from the boundaries of their parameter space are
admitted.

IDENTIFIABLE: Different values of the parame-
ters specify distinct models.

NESTED: H) is a limiting case of H;, e.g. with
some parameter fixed to a sub-range of the entire
parameter space.

CORRECT: The true model is specified either
under Hy or under H;.

https://arxiv.org/abs/1911.10237



‘Tﬁe TYLOC[Q[S sti[fneea[ro 66 correct .‘(

All our inference results are reliant on the
true model being somewhere in our model
space!

However, we should be cognisant that this
1s never guaranteed

If you have a mismodelling you are
concerned about, you should test how much
it can affect your results— you might well
find that your method 1s robust to it, or you
can add model uncertainties to represent
this

Another way to increase robustness is to
make your model simpler— a counting
experiment makes fewer assumptions on
the energy spectrum than if you include the
energy information

Necessary conditions for Wilks’ theorem

ASYMPTOTIC: Sufficient data is observed.

INTERIOR: Only values of y and 6 which are far
from the boundaries of their parameter space are
admitted.

IDENTIFIABLE: Different values of the parame-
ters specify distinct models.

NESTED: H) is a limiting case of H;, e.g. with
some parameter fixed to a sub-range of the entire
parameter space.

CORRECT: The true model is specified either
under Hy or under H;.

https://arxiv.org/abs/1911.10237



Asymptotic Distributions
fX&lWl}?[@S (2}[ wﬁen tﬁey may 66 USQC[

e Any gaussian-distributed
measurements

e Including histograms with high
bin counts

e unbinned likelihoods with
significant signal-like backgrounds

e Most common extra consideration
1s taking care of the parameter
boundaries

e The below paper presents some
cases:

https://arxiv.org/abs/1007.1727

(4(0) if 0 < ji

(discovery — <
0 else

\
2

q(p) if o < p

upper limi = 3
Gupper limit (1) 0 olse

\

o L(,0) -
zcmaﬁoé“
L(p,0)
L(070,u=0)

q (,LL) unified —

—2. else

Note that these three can
be seen as the same test

statistic if you always

restrict ji, u to be
positivel




Your probability to roll 6 on a dice
increases the more dice you get to
roll

Similarly, if your experiment tests
several signals, they will increase
their chance to see unusual effects
just by chance

Separate between “local”
significance— the probability that
one single signal model tests
fluctuates to some significance

and “global” significance— the
probability that any test fluctuates to

that extent 8 e AN ]
----- 2012 Exp. \s =7 TeV: [ Ldt=4.81b" :
104 —— 2012 Obs. Vs =8 TeV: [Ldt=5.9 "
10° G
----- 2011 Exp. -----2011-2012 Exp.
10°E — 2011 Obs. — 2011-2012 Obs.

PN RN R R AP AR AR PR R
110 115 120 125 130 135 140 145 150

m,, [GeV]
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Uncorrelated tests are simjofe

e A binomial process- what 1s the
probability to get a 3-sigma
deviation or more (say)

e 3 sigma (local) 1s 0.0027

e the probability to see a 3-sigma
effect in 10 trials 1s 0.027, or
equivalent to 2.2 sigma

e In the limit of p — > 0, you can
just divide your local p-value by
the number of trials
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The Look Elsewhere Effect

Correlations need Monte-Carlo or smart tricks

* However, in many cases the signals are not
uncorrelated— for example, a peak search
will be correlated with around its energy
resolution

wn
(=3

=

L
=

* One method 1s to use Toy Monte-Carlo
methods — powerful, but painful if your
significance is high!

[
(=

Events / unit mass

S

* However, if you do have a significant
result, your collaboration will often be
willing to expend significant computing
power :)

* [fyour test statistic follows an asymptotic
distribution otherwise, you may be able to
use a clever method by Gross& Vitells that
estimate the effective number of trials by
counting how many upwards fluctuations
you have (““up crossings”)

https://arxiv.org/abs/1005.1891 67



The Look Elsewhere Effect

The trial facwr migﬁt sometimes be rather small:

100 o 10-43 1 o sensitivity 2 0 sensitivity
=
>,
10—1 N
S 1 -44
= 10
) o
B 1072 B
g o
2 10745
— 1073 %
@ )]
5 o
= @) 10—46
Qo 10—4 -
o)
2 [
O
= F
-5 4 3 2 1 0 - -
10 10 10 10 10 10 §10—48 o . o

Minimal local p-value 10 102

WIMP Mass MpMm [GeV/c?]
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The Look Elsewhere Effect

ﬂﬂ&[ sometimes enormous
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https://github.com/cajohare/AxionLimits

Homeopathic poison
— the fewer events |
the greater danger

Experimenter bias is a
danger with few events

e With few events the effect can
be drastic 1f you chance
something in your analysis—
the plot shows the 60% change
in limit available to you
between the best post-
unblinding and the worst p()St— by viewing this graph you are obligated not to optimise based on it
unblinding radial cut.

e This is a necessary
consequence of making your
analysis sensitive to few
events!

e Further, with only some
hundreds of events, and many 0 250 500 750 1000 1250 1500 1750
variables, every event may well i
be an outlier in some space
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Experimenter bias is a
danger with few events

e The most common
experimenter bias mitigation
method 1s “blinding”— not
showing the signal-like region
of parameter space until the
analysis has been frozen

LUX developed a “salting”
procedure where synthetic

signals were made by
stitching together genuine S1
and S2 signals into full events

S1 event ln the data

A : 544 pages of summary
, ' _ notes for the XENONNT

S2 event

SRO analyses

Salt event

Tyler Anderson “Salting as a Bias Mitigation
Technique in LZ”, presentation at LIDINE 2021




Experimenter bias is a
danger with few events

e The most common
experimenter bias mitigation
method 1s “blinding”— not
showing the signal-like region
of parameter space until the
analysis has been frozen

e LUX developed a “salting”
procedure where synthetic
signals were made by
stitching together genuine S1
and S2 signals into full events

Salt event

AN

in the data

Tyler Anderson “Salting as a Bias Mitigation
Technique in LZ”, presentation at LIDINE 2021

Events in FV Blinded Region
+ Events in ER ROI 200 GeV/c? WIMP

o Events in WIMP ROI —— 2.3 keV ER peak

100 150 200 2
cS1 [PE]
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Experimenter bias is a
danger with few events

e The most common
experimenter bias mitigation
method 1s “blinding”— not
showing the signal-like region
of parameter space until the
analysis has been frozen

e LUX developed a “salting”
procedure where synthetic
signals were made by
stitching together genuine S1
and S2 signals into full events

Salt event

D /\

in the data

Tyler Anderson “Salting as a Bias Mitigation
Technique in LZ”, presentation at LIDINE 2021

Events in FV Blinded Region
+ Events in ER ROI 200 GeV/c? WIMP

o Events in WIMP ROl —— 2.3 keV ER peak
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Experimenter bias is a
danger with few events

e The most common
experimenter bias mitigation
method 1s “blinding”— not
showing the signal-like region
of parameter space until the
analysis has been frozen

e LUX developed a “salting”
procedure where synthetic
signals were made by
stitching together genuine S1
and S2 signals into full events

Salt event

D /\

in the data

Tyler Anderson “Salting as a Bias Mitigation
Technique in LZ”, presentation at LIDINE 2021

Events in FV Blinded Region
+ Events in ER ROI 200 GeV/c? WIMP
o Events in WIMP ROI — 2 3 keV ER peak

™ = 1150""”200u'
cS1 [PE]
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For today

Hands-on session: profile
likelihood, comparison with the
 Example analyses: we saw asymptotic:
how experiments compose
analytical and other models

to make their full statistical eonfdence manars ymatcn rece

model

e Profile Likelithood: we = i
discussed minimising |
nuisance parameters only,
if we wish to test some
hypothesis

e Asymptotic distributions:
How useful they are, and
the common failures we
encounter

e [ook-Elsewhere effect: one

of these effects
7




Knut Dundas Mora
fysikk@dundasmora.no, he/him

School of Underground
Physics at Bertinoro

Statistics and Inference

for rare event searches

What is a statistical model?
Does it describe your data?

What kinds of conclusions can we draw?



mailto:fysikk@dundasmora.no

Yesterday

Hands-on session: profile
likelihood, comparison with the
 Example analyses: we saw asymptotic:
how experiments compose
analytical and other models

to make their full statistical eonfdence manars ymatcn rece

model

e Profile Likelithood: we = i
discussed minimising |
nuisance parameters only,
if we wish to test some
hypothesis

e Asymptotic distributions:
How useful they are, and
the common failures we
encounter

e [ook-Elsewhere effect: one

of these effects
74




For today

Hands-on session: confidence

e Frequentist confidence intervals, profile construction
Intervals

e The profile construction

e A couple of tools
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Profiling Likelihoods & nuisance parameters s&»p 24

e We seldom have completely specified
hypotheses 600

&
o
s L
~ [=-] =}

e QOur background and signal models 250 |
have uncertainties, parameterised by

nuisance parameters (0)— you’ll see ‘
some examples in the next slides. o -

e The global best fit we denote with 5,0 9]
0 20 40 60 80 100 120 140 160 180 200
Signal Expectation

£
o
(=2}

o

ER Expectation
% &
(=)
-Log likelihood ratio

(== S . F B VYR - |

e However, we also want to test other s
— for example s=0 for discovery
significance or a range of s for
confidence intervals. A

5logZ (s, 0)180; = 0;

e In these cases, we set the other
nuisance parameters to their

conditional best-fit 6.
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Confidence Intervals

10_38 P \O\\
Olk[}* 4’47/0
/2019 203
A NY,

10-40 4
e More important than any point g —
. P . y p . 5 10742 4 ?aﬁlisfd‘eﬁo( %\\Cﬂwwf
estimate 1s being able to quantify N, g enonno 2908
. & \<<’\ 2% \
our uncertainty about our 5 1o e
pt R "
measurement | \“\1()
g 1074 (sieachy ) P‘a;'daX»élT (2023)
. . . . o LZ7(2023) ' B Se==
e Within the frequentist paradigm, we = - i 0 s YIS
do this with confidence intervals, @ [ i
that are required to have certain 105
. 10° 10t 102 103
properties exactly analogous to WIMP Mass [Gevic?]

hypothesis tests— a certain

Confidence contours, 8 GeV WIMP

probability of false rejection. £ Z
e Don’t need to be one-dimensional §** .
— but 1t can become tricky to work £** .3
with high dimensions 3 z
§ 160 0 77

1 2 3 a
WIMP-nucleon o [cm?] 1e-4°



Confidence Intervals

9 +Upper lelt

were “unlucky” e_, 10-48 Lo i

o 1043 1 o sensitivity 2 0 sensitivity
: : g 10
* You might be asked “what 1s the S
uncertainty of your upper limit” ”’Z 1044 |
S :
* The answer 1s that the upper limitis 8 ;[
the uncertainty ’
g 10—46 -
e So far, almost all direct detection 5
searches have measured dark s ot
1mi . s 107% F
matter as Oigpper Limit or, if they 7 é
=
=

« : s : WIMP Mass Mpy [GeV/c?]
e The “Brazil Band” shown with oM

limits show the expected result—
so 1t can serve as a proxy of
significance at the most
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Confidence Intervals

Expected number of WIMP events
0.0 25 50 7.5 10.0 12.5 15.0

s
oy
. . O
* You might be asked “what 1s the E=
uncertainty of your upper limit” T
2
e The answer is that the upper limitis 2 1}
the uncertainty = e 200 GeV/c? WIMP
A 0 we 1 | L
e So far, almost all direct detection 1.0 !
searches have measured dark é 08k
r Limit . =
matter as 0+ OPPC or,ifthey & g6l
—0 . - o "1 Critical region
c 99 +Uppel‘ Limat o o
WCEIc UI'lthky €_. S 04F = Upper limits (CDF)
8 0.2 - [Lower limits (1 - CDF)
. . ~ . r .
e The “Brazil Band” shown with 2 1 & 2 sigma bands

L :
llmlts show the expected result— 0 50-10-%7 1.0-10-% 1.5.10-%
so it can serve as a proxy of

) . WIMP-nucleon cross section o [cm?]
significance at the most
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What is “Coverage”?

2.0 : , , 1000

e The principle feature
of frequentist
confidence intervals 15} g1
1S coverage—Iin the
long run, the fraction
confidence intervals
reported by
experiments that
contain the true value 05|
should approach the
stated confidence
level (CL). 0.0

600 |-
1.0

iteration

400 -

—2-[In(L(p)) — In(L(n))]

200 -

1L I
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What is “Coverage”?

2.0 : , , 1000

e The principle feature
of frequentist
confidence intervals 15} g1
1S coverage—Iin the
long run, the fraction
confidence intervals
reported by
experiments that
contain the true value 05|
should approach the
stated confidence
level (CL). 0.0

600 |-
1.0

iteration

400 -

—2-[In(L(p)) — In(L(n))]

200 -

1L I
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3.0
e For each signal value s: 2.5

e Find the distribution of the 2.0

test statistic given s, f(X|s)  © 1.5]
1.0+

o Find limits, xg5,(s), Xyp(s) 0.5.

between which X occurs CL
of the time 0.0

e Invert them, then the
confidence interval for S i1s Neyman construction for
xﬁll)(X ), xd_rll(X ) a signal s

x ~ Gaussian with p = s+pp 0=1,
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Coverage so@sp oY)

e Note that since coverage i1s concerned with the
integrated probability rather than the density,
confidence intervals can be transformed using
any monotonic transformation and remain
correct, unlike estimators, for example.
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e Ideally, we have exact
coverage, but 1n particular
discrete distributions may not
allow this

e In which case we try to
always err on the side of
overcoverage

It can often be irksome to get
the “step” exactly right when
doing confidence intervals for
discrete problems— do a
small toy test if you’re unsure

12

10+

Coverage

Coverage with discreteness

1.00

0.95 A

0.90 A

0.85 A

0.80

4 6
Signal expectation

o N B~ O ©

]

8

10 12



e Note— what we discussed so

far does not completely
determine the Neyman
construction!

I chose to have an equal
probability for X to be below
and above the bounds

But if you want to set only
upper limits, for example,
you’ll choose to shift the
bounds to get the right
coverage

3.0

2.5
2.0+

wn1l.5

1.0
0.5

0.0

The Neyman construction

Neyman construction for
a signal s
X ~ Gaussian with p = s+ 0=1,
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Flip-flopping Sl 24

e If an experiment uses a cut on their
result to decide between a one- or
two-sided interval, the decision line
causes the complete method to
undercover

e (In a similar vein, if an experiment
re-runs its observation if it believes
it 1s very unlikely according to HO
will also undercover)

10

8|

6|

10

0.85 0.90 0.95
Coverage

1.00

0.235 O.|90 0.|95
Coverage

1.00

85



Unified Confidence Intervals

AKA Feldman-Cousins intervals

R(0) = 2 -log [ L(5)/ L(s)]

e Since a single Neyman

construction guarantees 3.0

coverage, one that yields a

smooth data-determined 2.3

interpolation between upper 20

limits and two-sided intervals ‘

may be just the ticket! W15 -
e FC uses the likelihood ratio as 1.0 -

an ordering parameter, R, to

decide what observations to 0.5 -

include first in the Neyman

construction 0.0

e Note: As defined, FC allows no
nuisance parameters
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The Profile Construction

‘Unfﬁeo[ intervals with nuisance parameters

e The unified construction may be extended to higher dimensions, but
only at a cost— you have to know/define the distribution for your entire
model space

e The Profile Construction uses the profiled likelihood ratio instead— this
means coverage is no longer guaranteed

e Critically, this 1s not just a failure of asymptoticity— you’ll get this
problem even with toyMC methods.

e In particular, the method may fail if nuisance parameters are close to
parameter boundaries or if they are strongly correlated with the signal
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Power Construction

§)
S5
3
S 4
-
N
£3
EZ
~
-1
N
| IIIIIIII
f6—2 10~
8%

10
Msignal

20
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Constructing Confidence Intervals

N W B~ 01 O

2- A(s|M=200GeV)

| 1 1 L1l | 1. 111 I
1%—2 10~ 10° O 10
8 Msignal

20
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Constructing Confidence Intervals
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Constructing Confidence Intervals
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The profile construction is hypothesis tests!

e The threshold we compute with
the profile construction is the area
where 1f our test statistic (the
profile likelihood) exceeds it, we
reject that hypothesis

e The confidence interval is the
union of all signal models we
cannot exclude

Profiled Log-likelihood-ratio, 50GeV WIMP

WIMP-nucleon cross-section [cm?]

5 3e-48 le-47 3e-47 5e-47
e 151m
a4l == upper limit =9.0
= best-fit = 0.5

>90% exclusion

0 2 4 6 8 10 12 14
expected signal events
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The Profile Construction

What to do with nuisance yammetvrs?

g(s S eb) — gsa(‘g (919) X gcal(eb) X ganc(eb)

* the toy simulations needed to compute
the test statistic distribution include
randomising all measured parameters

* including calibration measurements and
ancillary measurement terms

100 110
» Simulations done for a set of signal
strengths, and usually also for a range of - 8 T
signal shapes (varying mass or similar -S » c
parameters) O 10 E .-
W= C yo]
e However, no firm procedure exists for S i v
nuisance parameters = 49
E 10 3 o
* Fix them to best-fit values and be certain v s 2 S
you are not using the true values? : 2
10—3 1= L i | 0
e Randomise them according to uncertainty 0 2 4 6 8 10
risks double-counting uncertainties A(s|M)
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= XENON used the best-fit values of
nuisance parameters

= |n the latest XENON WIMP search,
the robustness of this construction
to mis-measuring nuisance
parameters was also estimated
(right)—changing the value to
+-0.012 yielded a percentage point
change in coverage

= For comparison, the best-fit value
was -0.004

10 15

5
[ I
0012 O O O O O |O O 0O ( 0.94

E§<p4ected signal events
|

012
[

o
0.005}- 0.92 ©
)
>

0.000- O O O O O|® O O (¢ H09S§

True oy,

—0.005

el
~0.012p- O ol @ oI O O| O oI q I0-86
0.00 0.02 0.04 0.06 0.08

WIMP cross-section/1-10*cm?

E. Aprile et. al (XENON). XENONIT dark matter data analysis: Signal

and background models and statistical inference. Phys. Rev. D,
99(11):112009, 2019. doi: 10.1103/Phys- RevD.99.112009.




Max Gap and Optimum Interval so&»p2;

0.975
(_,3 0.95
e [f the signal distribution is known along ® o025 |
some variable, the maximum gap/ ® :
optimal interval method can incorporate = 09— o e
this, even in the presence of an unknown 5 Total Expected Number of Events
background 2
£
 Find the space between observed events 2
containing the largest signal expectation, §&
and find the largest signal compatible 3
with this largest “gap”. g
‘ﬁ Maximum Gap
e The method can be extended as = x = Maximum x,
“optimum interval” where you search for % - ( dN
the largest interval containing 0,1,2 etc ‘') aE
events am am mun 8 8 Ei |- ]
El Ei+l

e threshold for the best interval test
statistic found via toyMC methods

S. Yellin. Finding an upper limit in the presence of an unknown

background. Physical Review D, 66(3), Aug 2002. ISSN
1089-4918. doi: 10.1103/physrevd.66.032005.




Bayesian Interpretation

* Probability may also be consistently interpreted
as degree of belief— in essence, given
everything you know, how much would you bet
that something will happen

 However, you have to introduce a prior— the
degree of belief you held in A before doing the
experiment

e This allows the assignment of probability to in
principle non-reproducible events

* 1n particular the event “this physics parameter
1s X, so a Bayesian analysis will return a
probability for your hypotheses, which would
not make sense in a frequentist interpretation

P(A|D) =

P(D|A)P(A)

P(D)



Credible Intervals S0P 24

(5.0) L(s,0) - 7(s,0)
P\S,0) =
| L [ ZL(s,0) - n(s,0)dsdd
e Bayesian credible intervals express
where the experimenter has a certain - 0040
total amount of posterior belief oo 0035

n

e Computed by finding a region that -

integrates the posterior to the required E 0020

value ' 0015

Background
w
o
o
S

N
o
o
S
posterior probability/b

0.010
1000 A

e Very often via toyMC methods

0.005

T T T T 0.000
0 500 1000 1500 2000

e Bayesian and frequentist results will Signa
converge in the limit of infinite data, but

< ° . . ns d I S k
in the meantime, it 1s not guaranteed emcee is a good place to start to make

a posterior point cloud:

https://emcee.readthedocs.io/en/
stable/

e No analogue to coverage (and 1t does not
require to have it)
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High-dimensional explicit likelihood so&r Y,

ﬁtgvsg//gitﬁuﬁ.com/ F (amﬂ'éam4 Hamedisx

e A recent alternative proposed to the
toyMC-based detector model, is to use the
explicit full likelithood expression using
efficient matrix multiplication+summation

e An explicit model avoids troubles in
template-morphing,

e This method inherently requires your
model to be 6-dimensional in the current
formulation, which gives added power, in
particular for higher exposures, at the
expense of difficulty in model validation

e Computation time is higher for a single
best-fit with the full flamedisx model—
not a problem for the best-fit but a
challenge for toyMC estimates of test
statistic distributions

Aalbers, Pelssers, Antochi, Tan and Conrad. “Finding Dark

Matter Faster with Explicit Profile Likelihoods” Phys.Rev.D 102
(2020) 7, 072010

Model function PMF/PDF
Lindhard factor -==--=--=---------------. o ’Poisson/DeIta
S1(x,y,z) efficiency ' Ro(E) 6\@0 ’ (Beta—)Binomial
Penning quenching o ‘ < ‘ Binomial
' 1
DPE fraction ------- ) . ! Normal
SPE resolution , X Ry (ng)
pooee : }
' v
:
1
v
P(S1| ng,) ‘ P(n5s, | nfe) B P(nBe | nbg) B R2 (0, niroa) B P(néee | nirod)
. : : Model function
! : ‘- - Single electron gain
— ! |
R(S1,52) = r r r ” ' o Electron lifetime
X Extraction efficiency
R et Hpe Tpe
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https://github.com/FlamTeam/flamedisx

alea— current XENON tool

https://github.com/XENONnT /alea/ S

P nan < | ¥ e O 127ags a coe o naatio - About ®
Atool to perform toyMC-based
& hammannr add more informative error msg (#229) X befeced -2days ago D 672 Commits inference constructions
m github Debug for pypi buld (#197) lastmonth & alea.readthedocs.iofenlatest
= alea ‘add more informative error msg (#229) 2 days ago 0 Readme
&5 BSD-3-Clause license
. . docs Use pyproject. tonl to install alea-inference (#192) stmonth
Y Jo— change gttt sl us ins n nobonk Tmontssgo @ Custompropares
7 4stars
D) e hsh 0 bt s (229) 2as a0
®© 5 watching
bumpversion.cfg Bump to v0.3.0 (#219) 3weeksago ¥ 1fork

Report repository
coveragerc Rename submitters last year eport reposftory

»
]
.
[s)
for toyMC profile :
D gitignore Update hypotheses and connon_hypothesis by pre_proce..  9monthsago  Releases 12
* [ .pre-commit-config.yam! [pre-commit.ci] pre-commit autoupdate (#226) 4 days ago © v0.3.0 (Latest)
C O n S tru C tl O n O readthedocsym! Use pyproject. tonl to install alea-inference (#192) last month s
8]
s)
D
&)
s)

+11 releases
HISTORY.md Bump to v0.30 (#219) 3 weeks ago

LICENSE Initial commit lastyear | Fackages

Nopackages published
README.md point away from alea for physics models (#143) 8monthsago  publsh your first package
pyproject.toml BUmp t0 v0.3.0 (#219) 3 weeks ago

Contributors 7
setup.clg Use pyproject. tonl to install alea-inference (#192) last month

Se¢eOT®

Deployments

e And a flexible framework to :
add your own likelthood—
define a functions for the e e | T
likelihood and to generate data .

fitting statistical models, computing confidence intervals and conducting sensitivity studies. It is primarily
. f

Languages

developed for the XENONNT dark matter experiment, but can be used for any statistical inference problem.

e Includes a full simplified 1Xe |
TPC-style likelihood!

cs2

103 -

e Based on XENONIT and o

XENONNT SRO WIMP . . wimp

analyses, with improved 0 20 40 6 8 100
. . csl
maintainable code

Most WIMP events have lower values of cs1 and cs2 compared to the ER events. We can use this to discriminate WIMP signal
events from ER background events.
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https://github.com/XENONnT/alea/

For today

Hands-on session: confidence

e Frequentist confidence intervals, profile construction
Intervals

e The profile construction

e A couple of tools
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