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GOALS!
This course should  
teach you: 

• To construct a statistical 
model for your experiment 

• To consider how to test 
whether your data is 
compatible with your 
statistical model 

• To use your statistical model 
make statements about 
physics 

• And to interpret others’ 
statements
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Structure
Three lectures and 
exercise sessions

• TUE  1645-1830 

• Introduction 

• Hypothesis Testing 

• Goodness of Fit 

• WED  1115-1300 

• Example analyses 

• Profile Likelihood 

• Asymptotic distributions 

• Look-Elsewhere effect 

• THUR 1645-1830 

• Confidence Interval construction 

• Nonasymptotics 

• Bayesian credible intervals 

• Unfolding 

• Tools
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Resources

https://arxiv.org/pdf/
1006.3019 
- useful to think about 
the goodness-of-fit 
challenge 4

https://arxiv.org/pdf/1006.3019
https://arxiv.org/pdf/1006.3019
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• A random variable, or several are   

• The probability of an event  is  

• Parameters of a model are  

• Conditional probabilities are  

• The likelihood is  

• Expectation value(s) for counting experiments are  

• Expectation values, variance   

• best-fit parameters or point estimates are 

X, Xi, X

A P(A)

θ

P(A |B)

ℒ(θ |X) = P(X |θ)

μ, μ

E(X), V(X)

̂θ

Notation
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• Our measured data is a result of processes both 
truly and practically random (e.g. quantum 
processes, me reading a ruler crooked) 

• In some cases, the data itself is close to what we 
wish to measure, and we hardly think of ourselves 
doing statistics  

• However, in particular when looking for small or 
subtle effects, the random noise may be significant, 
and the relationship between physics parameters 
and the measured quantity less straightforward 

• You’ll need to make a statistical model for how 
your data came to be,  

• And methods to make sound conclusions 

Observed data is random variables

6
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• Any function of your observed data will be a 
random variable 

• By using the right function, we can gather all 
the information gathered into one number 

• E.g. estimators ( ) which directly give a 
measurement of some parameter 

• The tricky part will most often be to 

•  choose the function to give the most 
information from the data, and  

• Understand the distribution  of the test 
statistic

̂s

Test statistics are functions of your observations 

̂μ =
1
N ∑

i

xi

̂σ =
∑i (xi − ̂μ)2

N − 1
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• if X is a continuous 
variable, we may define a 
probability density function 
(PDF) to describe the 
distribution  

• The cumulative density 
function (CDF), , is 
often also useful 

• and its inverse!

F(X)

Probability distributions/densities

f(X) = Limϵ→0P(x0 < X < x0 + ϵ)/ϵ

F(X) = ∫
X

−∞
f(X′￼)dX′￼

P(X0 < X < X1) = F(X1) − F(X0)

8



24Expectation values, variance

the mean estimator  has the correct expectation ̂μ =
1
N ∑

i

xi,

E( ̂μ) = E(X)

as doers the variance estimator ̂σ2 =
∑i (xi − ̂μ)2

N − 1
, E( ̂σ2) = V(X)

and spread: V(X) = ∫
∞

−∞
(X − E(X))2 ⋅ f(X)dX

Linear: E(a ⋅ y(X) + b ⋅ z(X)) = a ⋅ E(y(X)) + b ⋅ E(z(X))

If  are identically distributed independent random variables: xi

Useful Summaries of location:  E(X) = ∫
∞

−∞
X ⋅ f(X)dX
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• If we are certain about the outcome, is 
it really an experiment? 

• Depending on what you measure, your 
distributions may be as simple or as 
complicated as can be imagined 

• However, for many problems, physical 
considerations or your experience may 
lead you to have a look at some of the 
most common ones used— they are 
useful building blocks!  

• Some (student T, F-test, ) are also 
useful because they describe the 
behaviour of some useful test statistics

χ2

Any number of distributions!
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• If you count events that 
happen in a certain period, 
you’ll end up with a Poisson 
distribution 

• Expectation value and 
variance are both μ

The Poisson distribution

P(N) =
μNe−μ

N!

11



24

• If we count how many times 
each of a finite set of outcomes 
happens, we get the multinomial 
distribution 

•  total tries,  events in each 
category, with probability  

• And if the number of possible 
outcomes , we get the 
Binomial distribution 

• Examples: Histogram bin counts, 
classification

M ni
pi

k = 2

Bi/multi-nomial distributions
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• Turns up in e.g. 

• Spatial distribution of dark matter 
events? 

• But more importantly, it is often very 
often useful to convert another 
distribution into a uniform distribution 
(  here) between 0 and 1Y

Uniform distributions

<latexit sha1_base64="3dI2xOd7Yr2NB4DgoqTJm2Syy7o=">AAACFnicbVBNS8NAEN34bf2KevSyWMR6sCRS1ItQ9OJRwdpIW8Nms2mXbjZhdyKUkF/hxb/ixYMiXsWb/8Zt7UGtD5Z9vDfDzLwgFVyD43xaU9Mzs3PzC4ulpeWV1TV7feNaJ5mirEETkSgvIJoJLlkDOAjmpYqROBCsGfTPhn7zjinNE3kFg5R1YtKVPOKUgJF8e/+m4u3hE9zmEvx833wRDIrb3CtwVPF293A7JtBTcR4W2Nv17bJTdUbAk8QdkzIa48K3P9phQrOYSaCCaN1ynRQ6OVHAqWBFqZ1plhLaJ13WMlSSmOlOPjqrwDtGCXGUKPMk4JH6syMnsdaDODCVwyX1X28o/ue1MoiOOzmXaQZM0u9BUSYwJHiYEQ65YhTEwBBCFTe7YtojilAwSZZMCO7fkyfJ9UHVPazWLmvl+uk4jgW0hbZRBbnoCNXRObpADUTRPXpEz+jFerCerFfr7bt0yhr3bKJfsN6/AF/pnao=</latexit>

Y (X) =

∫ X

→↑
f(X ↓)dX ↓

<latexit sha1_base64="MDesAB5M10D+naov3m9akclA8i4="></latexit>

f(X) =

{
1

b→a if a < X < b

0 else
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• The Gaussian distribution is the limit 
of sums of random numbers with 
finite mean and variance— the Central 
Limit Theorem 

• E.g. — diffusion! 

• For this reason, it is often the 
“default” assumption for a continuous 
distribution 

• However, by using this (or many other 
analytical distributions) you may be 
assuming to know the behaviour for 
even very extreme outliers

The Gaussian distribution
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f(X) =
1

2πσ2
⋅ e−(x−μ)2/(2σ2)

14

The industry default. AKA bell curve, normal distribution
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• The sum of the square of  standard 
normal distributed numbers is 
distributed according to the 
-distribution 

• We’ll see later that this means that 
you’ll encounter this distribution 
frequently when computing 
confidence intervals

ν

χ2

The -distributionχ2

f(X |ν) =
1

2ν/2Γ(ν/2)
Xν/2−1e−x/2

N

∑
i=1

(Xi − μi)2

σ2
i

∼ χ2
ν=N

15
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• If you wish to characterise the 
distribution of, for example, the 
distribution of energy deposited 
by electrons and photons in a 
calorimeter, or the total path 
length of all tracks, you may never 
find an analytical estimate 

• Higher dimensionality can 
challenge this approach 

• and you’ll need to check you have 
enough samples or include the 
uncertainty

Histograms as distribution estimates

Fitting using finite Monte Carlo 
samples (Barlow and Beeston)

16

https://doi.org/10.1016/0010-4655(93)90005-W
https://doi.org/10.1016/0010-4655(93)90005-W
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• When using histograms to 
estimate the distribution, 
nuisance parameters are well-
named 

• To have a continuous nuisance 
parameter, “template 
morphing"-- linear interpolation 
between some points in 
parameter space is often used 

• Since this is computationally 
tricky, there will often be a 
divide between "rate 
parameters”-- those that only 
affect expectation values, and 
therefore are “easy” and "shape 
parameters”— those that 
require modifying the PDF of 
one or more signal/background 
model

Technical aside 1: Shape and Rate?
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• Another method to estimate 
densities, or too make a 
distribution estimate smoother 
is to use a kernel density 
estimate— adding a kernel, a 
PDF centred on each event in 
the sample 

• To choose the width of this 
kernel, you may have to 
split your dataset in a fit and 
validation dataset 

• If your distribution has sharp 
edges, or areas with very 
dissimilar densities, you may 
wish to use an adaptive KDE

KDEs  

scikit-learn provides 
extensive KDE functionality 18
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• The frequentist interpretation of probability is 
the relative frequency of some outcome in the 
limit of infinite number of repetitions 

• This limit needs only be in principle— valid 
frequentist inference can occur for a single 
experiment as long as that experiment is 
repeatable 

• Views the data as random outcomes of fixed 
processes 

• In some sense— a very particle physics way 
of looking at the world 

• Dominant in particle physics

Frequentist interpretation of probability

19
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• Frequentist hypothesis testing: 
make a decision between the 
two alternatives 

• You get to choose:  

• What test statistic you use to 
separate the two hypotheses!  

• And, the decision boundary, 
either explicitly 

• Or implicitly by 
demanding a certain 
probability to reject H0

Hypothesis testing

P(accept H0) P(accept H1)
H0 is true 1-α α (test size)
H1 is true β 1-β (power)

20
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• From the collected data, we wish to 
find a function of the data that 
expresses a direction or ordering of 
the data in a more H0 or H1 
direction 

• Typical examples; mean, median 
etc.  

• For the example to the right, y  
would be a poor test statistic if we 
wish to distinguish the two, x 
would be better, and a combination 
would provide very good separation

Test Statistics

x

y

21
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• Since we want to use the best test statistic for 
each case, we could have many ways of 
measuring agreement with a hypothesis 

• However, we can transform all our rulers into 
the same space by using p-values, which 
works with the integral of the distribution of T 

• all p-values are between 0 and 1, and are 
defined by deciding on:  

• a test statistic 

• and a decision of what direction that test 
statistic expresses more tension with  

• Under , p is uniformly distributed between 
0 and 1

H0

H0

What is a p-value?

p(Tobs) = ∫
∞

Tobs
f(T |H0)dT

22



p-values are the probability to observe a dataset 
equally or more extreme* than the one observed, 

given a certain (null) hypothesis

*ordering by a test statistic** 

**usually chosen to separate the null and alternative hypothesis as well as 
possible

23
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• As a yardstick for p-
values, you can often see 
“sigmas”, or  (or Z-
score) used. 

• “Five sigma”, or  
is the “standard” for 
discovery 

• Though you should 
consider what is the 
appropriate threshold 
in your field 

• Be wary that you often 
also see the 2-sided 
version!

σ

3 × 10−7

“Counting Sigmas”

σ = Φ−1(1 − p)

24



24Why 5?

https://arxiv.org/abs/
1310.1284, Louis Lyons

25
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• A very useful test statistic is likelihoods— 
the probability of the data given a model 

• Likelihoods are central to most of both 
Bayesian and Frequentist methods 

• As an example, the likelihood as a 
function of expected events for a counting 
experiment that sees 3 events is:  

• We often deal with independent events 
(e.g. number of events in different 
histogram bins); we can build up a total 
likelihood by multiplying (or, using 
logarithms, adding) terms 

•  The well-loved -statistic is what you 
get if you combine Gaussian likelihood 
terms

χ2

The Likelihood

L = P (data|H)
<latexit sha1_base64="SWFCE6WIeo8IO06J6SHCx56h1cw=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1UxIRdCMU3XThooJ9QBvKzWTaDp08mJkIJWbrxl9x40IRt/6BO//GSZqFth4YOHPOvdx7jxtxJpVlfRtLyyura+uljfLm1vbOrrm335ZhLAhtkZCHouuCpJwFtKWY4rQbCQq+y2nHnVxnfueeCsnC4E5NI+r4MArYkBFQWhqYuO+DGhPgyU2KL3Gzmv+Fn3igIH1onAzMilWzcuBFYhekggo0B+ZX3wtJ7NNAEQ5S9mwrUk4CQjHCaVrux5JGQCYwoj1NA/CpdJL8khQfa8XDw1DoFyicq787EvClnPqursz2lPNeJv7n9WI1vHASFkSxogGZDRrGHKsQZ7FgjwlKFJ9qAkQwvSsmYxBAlA6vrEOw509eJO3Tmm3V7NuzSv2qiKOEDtERqiIbnaM6aqAmaiGCHtEzekVvxpPxYrwbH7PSJaPoOUB/YHz+AMl0mb4=</latexit><latexit sha1_base64="SWFCE6WIeo8IO06J6SHCx56h1cw=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1UxIRdCMU3XThooJ9QBvKzWTaDp08mJkIJWbrxl9x40IRt/6BO//GSZqFth4YOHPOvdx7jxtxJpVlfRtLyyura+uljfLm1vbOrrm335ZhLAhtkZCHouuCpJwFtKWY4rQbCQq+y2nHnVxnfueeCsnC4E5NI+r4MArYkBFQWhqYuO+DGhPgyU2KL3Gzmv+Fn3igIH1onAzMilWzcuBFYhekggo0B+ZX3wtJ7NNAEQ5S9mwrUk4CQjHCaVrux5JGQCYwoj1NA/CpdJL8khQfa8XDw1DoFyicq787EvClnPqursz2lPNeJv7n9WI1vHASFkSxogGZDRrGHKsQZ7FgjwlKFJ9qAkQwvSsmYxBAlA6vrEOw509eJO3Tmm3V7NuzSv2qiKOEDtERqiIbnaM6aqAmaiGCHtEzekVvxpPxYrwbH7PSJaPoOUB/YHz+AMl0mb4=</latexit><latexit sha1_base64="SWFCE6WIeo8IO06J6SHCx56h1cw=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1UxIRdCMU3XThooJ9QBvKzWTaDp08mJkIJWbrxl9x40IRt/6BO//GSZqFth4YOHPOvdx7jxtxJpVlfRtLyyura+uljfLm1vbOrrm335ZhLAhtkZCHouuCpJwFtKWY4rQbCQq+y2nHnVxnfueeCsnC4E5NI+r4MArYkBFQWhqYuO+DGhPgyU2KL3Gzmv+Fn3igIH1onAzMilWzcuBFYhekggo0B+ZX3wtJ7NNAEQ5S9mwrUk4CQjHCaVrux5JGQCYwoj1NA/CpdJL8khQfa8XDw1DoFyicq787EvClnPqursz2lPNeJv7n9WI1vHASFkSxogGZDRrGHKsQZ7FgjwlKFJ9qAkQwvSsmYxBAlA6vrEOw509eJO3Tmm3V7NuzSv2qiKOEDtERqiIbnaM6aqAmaiGCHtEzekVvxpPxYrwbH7PSJaPoOUB/YHz+AMl0mb4=</latexit><latexit sha1_base64="SWFCE6WIeo8IO06J6SHCx56h1cw=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1UxIRdCMU3XThooJ9QBvKzWTaDp08mJkIJWbrxl9x40IRt/6BO//GSZqFth4YOHPOvdx7jxtxJpVlfRtLyyura+uljfLm1vbOrrm335ZhLAhtkZCHouuCpJwFtKWY4rQbCQq+y2nHnVxnfueeCsnC4E5NI+r4MArYkBFQWhqYuO+DGhPgyU2KL3Gzmv+Fn3igIH1onAzMilWzcuBFYhekggo0B+ZX3wtJ7NNAEQ5S9mwrUk4CQjHCaVrux5JGQCYwoj1NA/CpdJL8khQfa8XDw1DoFyicq787EvClnPqursz2lPNeJv7n9WI1vHASFkSxogGZDRrGHKsQZ7FgjwlKFJ9qAkQwvSsmYxBAlA6vrEOw509eJO3Tmm3V7NuzSv2qiKOEDtERqiIbnaM6aqAmaiGCHtEzekVvxpPxYrwbH7PSJaPoOUB/YHz+AMl0mb4=</latexit>

L(µ|N = 3) = Poisson(N = 3|µ)
<latexit sha1_base64="EeAJqBWJE69fuPSe5IZWsj0Eqw0=">AAACGXicbZDLSgMxFIYzXmu9jbp0EyxCuykzKuimUHTjQqSCvUCnlEyatqG5DElGKNO+hhtfxY0LRVzqyrcxbWehrQcCP99/DjnnDyNGtfG8b2dpeWV1bT2zkd3c2t7Zdff2a1rGCpMqlkyqRog0YVSQqqGGkUakCOIhI/VwcDXx6w9EaSrFvRlGpMVRT9AuxchY1Ha9gCPTx4glN+N8wOPRbem0AEtwihVPKpJqLcU4b/nI+oW2m/OK3rTgovBTkQNpVdruZ9CROOZEGMyQ1k3fi0wrQcpQzMg4G8SaRAgPUI80rRSIE91KppeN4bElHdiVyj5h4JT+nkgQ13rIQ9s5WVjPexP4n9eMTfeilVARxYYIPPuoGzNoJJzEBDtUEWzY0AqEFbW7QtxHCmFjw8zaEPz5kxdF7aToe0X/7ixXvkzjyIBDcATywAfnoAyuQQVUAQaP4Bm8gjfnyXlx3p2PWeuSk84cgD/lfP0AVmqf3A==</latexit><latexit sha1_base64="EeAJqBWJE69fuPSe5IZWsj0Eqw0=">AAACGXicbZDLSgMxFIYzXmu9jbp0EyxCuykzKuimUHTjQqSCvUCnlEyatqG5DElGKNO+hhtfxY0LRVzqyrcxbWehrQcCP99/DjnnDyNGtfG8b2dpeWV1bT2zkd3c2t7Zdff2a1rGCpMqlkyqRog0YVSQqqGGkUakCOIhI/VwcDXx6w9EaSrFvRlGpMVRT9AuxchY1Ha9gCPTx4glN+N8wOPRbem0AEtwihVPKpJqLcU4b/nI+oW2m/OK3rTgovBTkQNpVdruZ9CROOZEGMyQ1k3fi0wrQcpQzMg4G8SaRAgPUI80rRSIE91KppeN4bElHdiVyj5h4JT+nkgQ13rIQ9s5WVjPexP4n9eMTfeilVARxYYIPPuoGzNoJJzEBDtUEWzY0AqEFbW7QtxHCmFjw8zaEPz5kxdF7aToe0X/7ixXvkzjyIBDcATywAfnoAyuQQVUAQaP4Bm8gjfnyXlx3p2PWeuSk84cgD/lfP0AVmqf3A==</latexit><latexit sha1_base64="EeAJqBWJE69fuPSe5IZWsj0Eqw0=">AAACGXicbZDLSgMxFIYzXmu9jbp0EyxCuykzKuimUHTjQqSCvUCnlEyatqG5DElGKNO+hhtfxY0LRVzqyrcxbWehrQcCP99/DjnnDyNGtfG8b2dpeWV1bT2zkd3c2t7Zdff2a1rGCpMqlkyqRog0YVSQqqGGkUakCOIhI/VwcDXx6w9EaSrFvRlGpMVRT9AuxchY1Ha9gCPTx4glN+N8wOPRbem0AEtwihVPKpJqLcU4b/nI+oW2m/OK3rTgovBTkQNpVdruZ9CROOZEGMyQ1k3fi0wrQcpQzMg4G8SaRAgPUI80rRSIE91KppeN4bElHdiVyj5h4JT+nkgQ13rIQ9s5WVjPexP4n9eMTfeilVARxYYIPPuoGzNoJJzEBDtUEWzY0AqEFbW7QtxHCmFjw8zaEPz5kxdF7aToe0X/7ixXvkzjyIBDcATywAfnoAyuQQVUAQaP4Bm8gjfnyXlx3p2PWeuSk84cgD/lfP0AVmqf3A==</latexit><latexit sha1_base64="EeAJqBWJE69fuPSe5IZWsj0Eqw0=">AAACGXicbZDLSgMxFIYzXmu9jbp0EyxCuykzKuimUHTjQqSCvUCnlEyatqG5DElGKNO+hhtfxY0LRVzqyrcxbWehrQcCP99/DjnnDyNGtfG8b2dpeWV1bT2zkd3c2t7Zdff2a1rGCpMqlkyqRog0YVSQqqGGkUakCOIhI/VwcDXx6w9EaSrFvRlGpMVRT9AuxchY1Ha9gCPTx4glN+N8wOPRbem0AEtwihVPKpJqLcU4b/nI+oW2m/OK3rTgovBTkQNpVdruZ9CROOZEGMyQ1k3fi0wrQcpQzMg4G8SaRAgPUI80rRSIE91KppeN4bElHdiVyj5h4JT+nkgQ13rIQ9s5WVjPexP4n9eMTfeilVARxYYIPPuoGzNoJJzEBDtUEWzY0AqEFbW7QtxHCmFjw8zaEPz5kxdF7aToe0X/7ixXvkzjyIBDcATywAfnoAyuQQVUAQaP4Bm8gjfnyXlx3p2PWeuSk84cgD/lfP0AVmqf3A==</latexit>

L(~µ| ~N) =
Y

i

Poisson(Ni|µi)
<latexit sha1_base64="NX+uBjx1XPeX5GckZRNQPtLRjSI="></latexit><latexit sha1_base64="NX+uBjx1XPeX5GckZRNQPtLRjSI="></latexit><latexit sha1_base64="NX+uBjx1XPeX5GckZRNQPtLRjSI="></latexit><latexit sha1_base64="NX+uBjx1XPeX5GckZRNQPtLRjSI="></latexit>

log(L(~µ|~x,~�)) =
X

i

log(Gaussian(xi|µi,�i)) =

X

i

(
(xi � µi)2

�2
i

) +K
<latexit sha1_base64="GcSnOmjFk0Wz/JUhKPjISvOmJ/c=">AAACg3icbVFdb9MwFHUCg618FXjci0UFSrVRkmoSvEya2ANI8DAkuk2qS3TjOp0124n8Ma3y8kf4Wbzt3+CkRbCNK1k6Ovcc2/fcohbc2DS9juJ79zcePNzc6j16/OTps/7zF8emcpqyCa1EpU8LMExwxSaWW8FOa81AFoKdFOeHbf/kgmnDK/XdLms2k7BQvOQUbKDy/k8iqkVCJNgzCsJ/bRJywagn0jVXHbpsdleM4QsJzXCI9zEhPWKczPlfs5b+EzhjOKgmucz5Vbgh57srV85v2nBCSg3Ut8K3nXD4Y9z4P+KAh3jnS94fpKO0K3wXZGswQOs6yvu/yLyiTjJlqQBjplla25kHbTkVrOkRZ1gN9BwWbBqgAsnMzHcZNvh1YOa4rHQ4yuKO/dfhQRqzlEVQtvOa272W/F9v6mz5Yea5qp1liq4eKp3AtsLtQvCca0atWAYAVPPwV0zPIMRjw9p6IYTs9sh3wfF4lKWj7Nve4ODjOo5NtI1eoQRl6D06QJ/REZogGqHoTfQuSuONeCcex3sraRytPS/RjYr3fwNYmMHm</latexit><latexit sha1_base64="GcSnOmjFk0Wz/JUhKPjISvOmJ/c="></latexit><latexit sha1_base64="GcSnOmjFk0Wz/JUhKPjISvOmJ/c="></latexit><latexit sha1_base64="GcSnOmjFk0Wz/JUhKPjISvOmJ/c="></latexit>
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• IFF  and  are completely 
specified, the likelihood ratio 
between the two turns out to be 
the solution to the test statistic 
problem— it is the uniformly 
most powerful test.  

• For example, the plot to the right 
shows the NP ratio between two 
Gaussian hypotheses, one with 

 = 0,1 and one 1,2. 

H0 H1

μ, σ

The Neyman-Pearson Lemma

27

λ =
ℒ(H1))
ℒ(H0)
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• We seldom have completely 
specified hypotheses 

• Our background and signal models 
have uncertainties, parameterised by 
nuisance parameters (theta below)  

• Unlike the Neyman-Pearson case, we 
are not guaranteed that this is the best 
possible test, but it very often 
performs well. 

Profiling Likelihoods
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• We are rarely (never) able to include 
every possible uncertainty in our 
inference frameworks 

• And it is not likely that every 
parameter is important 

• Need ways to decide which parameters 
are unimportant enough 

• To my knowledge, no standards or 
consistency in how these questions are 
treated.  

• To the right, two toy investigations in 
XENON1T— signal shape parameters 
often have very little impact on 
confidence intervals

Follow-up question:  
What parameters may be ignored?

29E. Aprile et. al (XENON). Dark Matter Search Results from a One Ton-Year Exposure of 
XENON1T. Phys. Rev. Lett., 121(11):111302, 2018. doi: 10.1103/Phys- RevLett.121.111302.

E. Aprile et. al (XENON). Search for Coherent Elastic Scattering of Solar 8B Neutrinos in the 
XENON1T Dark Matter Experiment. Phys. Rev. Lett., 126:091301, 2021. doi: 10.1103/
PhysRevLett.126.091301.
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• Estimators are test statistics we wish to use to 
understand some physical parameter.  

• The ideal estimator has zero bias ( ) and as low 
variance as possible 

• And most importantly, that it is consistent— that it 
converges to the true value with increasing 
observations 

• A simple method to construct an estimator is to compute 
the expected mean or higher moments of the 
distribution, and invert that expression  

• The maximum likelihood will, in the limit of a large 
sample be ideal: it is consistent, and is asymptotically 
normally distributed with the minimal possible variance

E( ̂θ) = θ

Estimators

δlogℒ( ̂θ)/δθj = 0;

30



From the earliest days of statistics, 
statisticians have begun their analysis by 
proposing a distribution for their observations, 
and then, perhaps with somewhat less 
enthusiasm, have checked whether this 
distribution is true 

- Ralph B. D’Angostino and Michael A. Stephens,  Goodness-of-Fit 
Techniques, 1986
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• The conclusions we draw from our data 
depends on our statistical model 

• Unless we have a strong physical argument 
for a certain distribution to hold (e.g. Poission 
for counting events) we should probe the 
correctness of our model or fit to the data 

• Unlike other hypothesis testing, GOF tests 
must consider every possible other alternative 
as a competitor to the model we test 

• The conclusion to a failed goodness-of-fit test 
may therefore sometimes just be “worry 
more”

Goodness-of-Fit (GOF)

32
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• The sum of  standard normal-distributed 
numbers is -distributed 

• Often encountered fitting curves 

• If there are errors in both x and y, you may 
transform it into an effective total error on 
y 

• or histograms with large enough counts that 
they approach a Gaussian 

• If one or more parameters are fit, the 
effective number of degrees of freedom is 
reduced accordingly (this assumes that the 
parameters are independent)

ν
χ2

ν DOF

χ2

χ2 = ∑ (xi − E(Xi))2/σ2
i

number of observations - 

number of fitted parameters
ν ≈

33
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• Kolmogorov-Smirnov and Anderson-
Darling are two tests that rely on 
comparing the Empirical Distribution 
Function (the cumulative fraction of 
events) and the tested distribution 

• Useful since no binning is assumed 

• The KS test considers the maximal 
distance between the two, and manages 
to be distribution-free— the distribution 
of the test statistic does not depend on  

• Alternatives include the Cramér-von 
Mises test, which is also distribution-
free and Anderson-Darling which is not

F

KS and AD
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W2 = ∫
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(EDF(X) − F(X))2 f(X)dX34
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• Ideally, you should consider what sorts 
of mismodelling you are most worried 
about and choose goodness-of-fit tests to 
target these with the most power 

• Often, a projection on the dimension 
you care about will be a good start 

• Some neat ideas exist to try to tackle 
high dimensionality by considering an 
analogue of electrostatic energy between 
point clouds 

• One caution: the likelihood itself may 
seem tempting, but turns out to be a poor 
GOF test statistic

Other alternatives exist!

https://arxiv.org/abs/physics/0310167

https://arxiv.org/abs/hep-ex/0203010
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• Many event selections may 
be considered goodness-of-
fit tests— asking whether 
they are compatible with 
coming from a signal 

• Others are more standard 
hypothesis tests, if the 
background model is 
specified 

• But we often define some 
cuts first and only model 
what remains!

Cuts are often GOF tests!

36



24

• What is the area of a circle? 

• Or, often equally importantly
— what is the distribution of 
our estimate for , or any 
other test statistic you can 
imagine? 

• In this case you can figure 
out the distribution,  

• But for many more 
complicated cases, you may 
either rely on approximations 
or simulated results

π

What are Toy Monte-Carlo methods?

37
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Searching for rare events is 
a matter of luck:

38
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Searching for rare events is 
a matter of luck:
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Searching for rare events is 
a matter of luck:

cs1

lo
g1

0(
cs

2)
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Questions?
Introduction to statistics

• We model our observations with a 
statistical model, usually in terms of 
probability distributions.  

• We choose test statistics that distil 
the information we wish to learn 
from the data 

• and often formulate questions in 
terms of hypothesis tests— given 
the data, should we favour one or 
the other? 

• A particularly important hypothesis 
test is whether your data agrees with 
the distribution you use! 

41



Statistics and Inference 
for rare event searches

24 What is a statistical model?
 Does it describe your data?

What kinds of conclusions can we draw?

      Knut Dundas Morå 
      fysikk@dundasmora.no, he/him 

School of Underground 
Physics at Bertinoro

42
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Summary of first topic

• We model our observations with a 
statistical model, usually in terms of 
probability distributions.  

• We choose test statistics that distil 
the information we wish to learn 
from the data 

• and often formulate questions in 
terms of hypothesis tests— given 
the data, should we favour one or 
the other? 

• A particularly important hypothesis 
test is whether your data agrees with 
the distribution you use! 

43



For today

• Example analyses 

• Profile Likelihood 

• Asymptotic distributions 

• Look-Elsewhere effect

44
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• We seldom have completely specified 

hypotheses 

• Our background and signal models 
have uncertainties, parameterised by 
nuisance parameters ( )— you’ll see 
some examples in the next slides.  

• The global best fit we denote with  

• However, we also want to test other s
— for example s=0 for discovery 
significance or a range of s for 
confidence intervals.  

• In these cases, we set the other 
nuisance parameters to their 
conditional best-fit . 

θ

̂s, ̂θ

̂ ̂θ

Profiling Likelihoods & nuisance parameters

45

δlogℒ(s, ̂ ̂θ)/δθj = 0;



The likelihood relies on the 
model
• The validity of the inference relies on 

the underlying model 

• The signal model may be quite 
forgiving— if an excess is 10-20 
events, far tails are less significant 

• Experiments typically include 
uncertainties on background rates, but 
not always on the distribution used.  

• XENON1T added a “signal-like” 
background shape to its ER 
background model to lower the 
chance of overconstraining the model. 

• For XENONnT, this was replaced by 
a  more careful selection of nuisance 
parameter directions, and a stronger 
focus on pre-defined goodness-of-fit 
tests chosen for their power to 
discover mismodelling

46

N. Priel et al. A model independent safeguard against background 
mismodeling for statistical inference. 2017(05):013–013, may 2017. 
doi: 10.1088/1475-7516/2017/05/013.



Counting Experiments

• “just” counting events— but the 
estimate of the background rate 
and acceptance can be as 
complicated as anything 

• If there is no signal/background 
overlap or complete overlap, this 
may be the optimal sensitivity  

• Otherwise, it might still be a 
worthwhile compromise if 
you’re worried about whether 
you can model your background 
correctly 

47

DarkSide-50 532-day https://
arxiv.org/pdf/1802.07198

ℒsci(s, ⃗θs , ⃗θb) =
Poisson(Nsci |μb( ⃗θb) + μs(s, ⃗θs , ⃗θb))



However, shapes often matter

48



On-Off likelihoods

• WIMP searches rarely get to 
turn off their signal 
completely  

• Directional dark matter 
searches and some axion 
searches, on the other hand 
can take representative data in 
a no/low signal and high 
signal state 

• Also common in indirect 
detection

49

 

ℒsci(s, ⃗θs , ⃗θb) =
Poisson(Nsci |μb( ⃗θb) + μs(s, ⃗θs , ⃗θb)) ×

Poisson(Ncal |α × μb( ⃗θb))



Binned Likelihood

• With more than  events 
in each bin, you can use 
computationally efficient 
methods to compute test 
statistic distributions 

• Eases visualisation and 
goodness-of-fit 

• And simpler to share results 

• Minimal sensitivity loss if the 
bin width is small compared 
to the detector resolution

∼ 5

50

ℒsci(s, ⃗θs , ⃗θb) =
Ns

∏
i=1

[Poisson(Ni |μb,i( ⃗θb) + μs,i(s, ⃗θs , ⃗θb))]
PandaX ionisation-only search, https://
arxiv.org/abs/2212.10067

https://arxiv.org/abs/2212.10067
https://arxiv.org/abs/2212.10067


Unbinned (extended) 
likelihood

• If the events are too few to fill 
bins, the unbinned likelihood 
promises the best performance 

• Might still have to rely on 
binned methods for goodness-
of-fit 

• if you rely on Monte Carlo 
methods to generate 
distributions, that can require 
a lot of statistics and be harder 
to validate

51

ℒsci(s, ⃗θs , ⃗θb) = Poisson(Nsci |μb( ⃗θb) + μs(s, ⃗θs , ⃗θb)) ×
Ns

∏
i=1 [ μs

μs + μb
fs( ⃗xi |s, ⃗θs , ⃗θb) +

μb

μs + μb
fb( ⃗xi | ⃗θb)]

XENONnT first WIMP search



Likelihoods can be 
composed

52

ℒ(s, ⃗θs , ⃗θb)Science run = ℒsci(s, ⃗θs , ⃗θb) × ℒcal( ⃗θb) × ℒanc( ⃗θb)

ℒ(s, ⃗θs , ⃗θb)tot = ℒ(s, ⃗θs , ⃗θb)tot × ℒ(s, ⃗θs , ⃗θb)tot × ℒshared(θ)
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• The log-likelihood for a number 
of gaussian-distributed numbers 
has the same form as the 
-formula (Wilks’ theorem) 

• It turns out that if a set of 
conditions that are quite often  
fulfilled, the distribution of the 
likelihood ratio converges to a 
-distribution with some number of 
free parameters 

• This can massively simplify your 
computations, and so it is worth to 
look through in detail

χ2

TM

χ2

Asymptotic Distributions

https://arxiv.org/abs/1911.1023753

A massive shortcut if you’re careful/lucky

q(s) = − 2 ⋅ log(
ℒ(s, ̂ ̂s)
ℒ( ̂s, ̂s)

)
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• As our example: the profile log-likelihood 

ratio test for a counting experiment with a 
known background but uncertain efficiency 

• Parameters:  

• Signal s 

• efficiency e 

• Fixed, known parameters:  

• Background expectation  

• efficiency uncertainty  

• Data:  

• Number of events N 

• efficiency estimate 

b

σe

emeas

Asymptotic Distributions

54
(L)(s, e) = Pois(N |s ⋅ e + b) × Gaus(emeas |e, σe)
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• Wilks’ theorem holds in the 
asymptotic case of infinite data, 
but convergence can often be 
quick:  

• Poisson counting with more 
than ca. 10 events 

• Gaussian measurements 

• However, if you have an unbinned 
likelihood, the important 
consideration is signal-like 
background events— for example 
seen with lXe TPC searches

Asymptotic Distributions

https://arxiv.org/abs/1911.1023756

What does “sufficiently data” mean?



57
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• As a mental shortcut— if under 
your null or signal hypothesis, 
parameters sometimes or often goes 
to a physical boundary, it will not 
behave asymptotically 

• This is very often the case e.g. if 
you’re looking for a signal with 
expectation value  

• If you are testing the hypothesis that 
the model that has the parameter at 
the boundary— for example that the 
signal is 0, you may be able to use 
Chernoff’s theorem if all other 
conditions are met

≥ 0

Asymptotic Distributions

<latexit sha1_base64="UsRo5G+Wqny/zo/Q4W01wuVRRmY=">AAACTHicbZBNaxRBEIZ7Vo1x/Vr16KVxETYIy8wSNBchGJHcjOAmgZ11qemtyTTp6Z5010iWZn6gFw/e/BVeckiQQHo3e8hXQcPL+1ZR1U9WKekojv9GrXv3H6w8XH3Ufvzk6bPnnRcvd52prcChMMrY/QwcKqlxSJIU7lcWocwU7mWHW/N87ydaJ43+TrMKxyUcaJlLARSsSUfkvaM1njoCcWhR+ZTwmPxWgVabPG8an0JVWXPc8DS3IHzS+EHQopA/BhP/+euXj0nD310Pp6gIemkB5NOybtYmnW7cjxfFb4tkKbpsWTuTzp90akRdoiahwLlRElc09mBJCoVNO60dVuFgOMBRkBpKdGO/gNHwt8GZ8tzY8DTxhXt1wkPp3KzMQmcJVLib2dy8KxvVlG+MvdRVTajF5aK8VpwMn5PlU2lRkJoFAcLKcCsXBQQuFPi3A4Tk5pdvi91BP3nfX/+23t38tMSxyl6zN6zHEvaBbbJttsOGTLBf7B87ZWfR7+gk+h+dX7a2ouXMK3atWisX7fG0Xw==</latexit>

f(q)
Cherno!→ 1

2
ω2
DOF=1 +

1

2
ε(µ̂)

58

What does “interior of the parameter space” mean?
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• If the model is degenerate for 
some parameter, the asymptotic 
approximation will not hold 

• This is quite common in physics! 
When the signal strength is 0, the 
model does not depend on any 
other signal parameter 

• This is another way of looking at 
the look-elsewhere effect, which 
we’ll look at later

Asymptotic Distributions

61

What does it mean for parameters to be “identifiable”?
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• If the model tested is not a limit of 
the general hypothesis 

• Such as when testing between 
two disparate models 

• Or if your theory features a non-
zero fixed signal you wish to test 
against the no-signal hypothesis 

• You can always linearly add the 
two hypotheses’ models together 
with a new parameter, but then you 
introduce Non-identifiability at the 
boundary! 

Asymptotic Distributions

https://arxiv.org/abs/1911.1023762

What does it mean for models to be “nested”?
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• All our inference results are reliant on the 
true model being somewhere in our model 
space! 

• However, we should be cognisant that this 
is never guaranteed  

• If you have a mismodelling you are 
concerned about, you should test how much 
it can affect your results— you might well 
find that your method is robust to it, or you 
can add model uncertainties to represent  
this 

• Another way to increase robustness is to 
make your model simpler— a counting 
experiment makes fewer assumptions on 
the energy spectrum than if you include the 
energy information

Asymptotic Distributions

https://arxiv.org/abs/1911.1023763

The models still need to be correct :( 
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• Any gaussian-distributed 
measurements  

• Including histograms with high 
bin counts 

• unbinned likelihoods with 
significant signal-like backgrounds 

• Most common extra consideration 
is taking care of the parameter 
boundaries 

• The below paper presents some 
cases: 

Asymptotic Distributions

https://arxiv.org/abs/1007.1727

<latexit sha1_base64="Cjz/pA29814qehS1vFcjbPnTgjw="></latexit>

qupper limit(µ) =

{
q(µ) if µ̂ → µ

0 else
<latexit sha1_base64="TeQoUfzrqm6NtHqFEm52HlOY0q8="></latexit>

q(µ)unified =






→2 · L(µ,ˆ̂ω)

L(µ̂,ω̂)
if 0 ↑ µ̂

→2 · L(µ,ˆ̂ω)

L(0,ω̂µ=0)
else

Note that these three can 
be seen as the same test 
statistic if you always 
restrict  to be 
positive!

̂μ, μ
64

Examples of when they may be used <latexit sha1_base64="pQY9Z24U4a8zGA8rp+EAeGCYicg="></latexit>

qdiscovery =

{
q(0) if 0 → µ̂

0 else
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• Your probability to roll 6 on a dice 
increases the more dice you get to 
roll 

• Similarly, if your experiment tests 
several signals, they will increase 
their chance to see unusual effects 
just by chance 

• Separate between “local” 
significance— the probability that 
one single signal model tests 
fluctuates to some significance 

• and “global” significance— the 
probability that any test fluctuates to 
that extent

The Look Elsewhere Effect

65

AKA trial factor AKA non-identifiable signal parameters
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• A binomial process- what is the 
probability to get a 3-sigma 
deviation or more (say) 

• 3 sigma (local) is 0.0027 

• the probability to see a 3-sigma 
effect in 10 trials is 0.027, or 
equivalent to 2.2 sigma 

• In the limit of , you can 
just divide your local p-value by 
the number of trials

p − > 0

The Look Elsewhere Effect

P (n|p,N) =

✓
N

n

◆
pn · (1.� p)N�n

1�
✓
N

0

◆
p0 · (1.� p)N ⇠p⌧1 N · p

66

Uncorrelated tests are simple
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• However, in many cases the signals are not 
uncorrelated— for example, a peak search 
will be correlated with around its energy 
resolution 

• One method is to use Toy Monte-Carlo 
methods — powerful, but painful if your 
significance is high!  

• However, if you do have a significant 
result, your collaboration will often be 
willing to expend significant computing 
power :)  

• If your test statistic follows an asymptotic 
distribution otherwise, you may be able to 
use a clever method by Gross&Vitells that 
estimate the effective number of trials by 
counting how many upwards fluctuations 
you have (“up crossings”)

The Look Elsewhere Effect

https://arxiv.org/abs/1005.1891 67

Correlations need Monte-Carlo or smart tricks
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The trial factor might sometimes be rather small: 
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And sometimes enormous
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Experimenter bias is a 
danger with few events

• With few events the effect can 
be drastic if you chance 
something in your analysis— 
the plot shows the 60% change 
in limit available to you 
between the best post-
unblinding and the worst post-
unblinding radial cut.  

• This is a necessary 
consequence of making your 
analysis sensitive to few 
events! 

• Further, with only some 
hundreds of events, and many 
variables, every event may well 
be an outlier in some space

70

Homeopathic poison
— the fewer events 
the greater danger



Experimenter bias is a 
danger with few events

• The most common 
experimenter bias mitigation 
method is “blinding”— not 
showing the signal-like region 
of parameter space until the 
analysis has been frozen 

• LUX developed a “salting” 
procedure where synthetic 
signals were made by 
stitching together genuine S1 
and S2 signals into full events 
and placing them in the data

71
Tyler Anderson “Salting as a Bias Mitigation
Technique in LZ”, presentation at LIDINE 2021
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For today
• Example analyses: we saw 

how experiments compose 
analytical and other models 
to make their full statistical 
model 

• Profile Likelihood: we 
discussed minimising 
nuisance parameters only, 
if we wish to test some 
hypothesis 

• Asymptotic distributions: 
How useful they are, and 
the common failures we 
encounter 

• Look-Elsewhere effect: one 
of these effects

72

Hands-on session: profile 
likelihood, comparison with the 
asymptotic: 



Statistics and Inference 
for rare event searches

24 What is a statistical model?
 Does it describe your data?

What kinds of conclusions can we draw?

      Knut Dundas Morå 
      fysikk@dundasmora.no, he/him 

School of Underground 
Physics at Bertinoro
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Yesterday
• Example analyses: we saw 

how experiments compose 
analytical and other models 
to make their full statistical 
model 

• Profile Likelihood: we 
discussed minimising 
nuisance parameters only, 
if we wish to test some 
hypothesis 

• Asymptotic distributions: 
How useful they are, and 
the common failures we 
encounter 

• Look-Elsewhere effect: one 
of these effects
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Hands-on session: profile 
likelihood, comparison with the 
asymptotic: 



For today
• Frequentist confidence 

intervals 

• The profile construction 

• A couple of tools

75

Hands-on session: confidence 
intervals, profile construction



24
• We seldom have completely specified 

hypotheses 

• Our background and signal models 
have uncertainties, parameterised by 
nuisance parameters ( )— you’ll see 
some examples in the next slides.  

• The global best fit we denote with  

• However, we also want to test other s
— for example s=0 for discovery 
significance or a range of s for 
confidence intervals.  

• In these cases, we set the other 
nuisance parameters to their 
conditional best-fit . 

θ

̂s, ̂θ

̂ ̂θ

Profiling Likelihoods & nuisance parameters

76

δlogℒ(s, ̂ ̂θ)/δθj = 0;
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• More important than any point 
estimate is being able to quantify 
our uncertainty about our 
measurement 

• Within the frequentist paradigm, we 
do this with confidence intervals, 
that are required to have certain 
properties exactly analogous to 
hypothesis tests— a certain 
probability of false rejection.  

• Don’t need to be one-dimensional
— but it can become tricky to work 
with high dimensions

Confidence Intervals

77



24

• You might be asked “what is the 
uncertainty of your upper limit” 

• The answer is that the upper limit is 
the uncertainty 

• So far, almost all direct detection 
searches have measured dark 
matter as  or, if they 
were “unlucky”  

• The “Brazil Band” shown with 
limits show the expected result— 
so it can serve as a proxy of 
significance at the most

0+Upper Limit
−0

ϵ+Upper Limit
−ϵ

Confidence Intervals

78



24

• You might be asked “what is the 
uncertainty of your upper limit” 

• The answer is that the upper limit is 
the uncertainty 

• So far, almost all direct detection 
searches have measured dark 
matter as  or, if they 
were “unlucky”  

• The “Brazil Band” shown with 
limits show the expected result— 
so it can serve as a proxy of 
significance at the most

0+Upper Limit
−0

ϵ+Upper Limit
−ϵ

Confidence Intervals

78



24

• The principle feature 
of frequentist 
confidence intervals 
is coverage—in the 
long run, the fraction 
confidence intervals 
reported by 
experiments that 
contain the true value 
should approach the 
stated confidence 
level (CL).

What is “Coverage”?

79
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• For each signal value s:  

• Find the distribution of the 
test statistic given s,  

• Find limits,  
between which X occurs CL 
of the time 

• Invert them, then the 
confidence interval for S is 

f(X |s)

xdn(s), xup(s)

x−1
up(X), x−1

dn(X)

The Neyman construction

Up
pe

r L
im

it,
 𝛼

=0
.1

(L
ow

er
 L

im
it)

Neyman construction for 
a signal s 

x ~ Gaussian with 𝝻 = s+𝝻b 𝞂=1, 
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• Note that since coverage is concerned with the 
integrated probability rather than the density, 
confidence intervals can be transformed using 
any monotonic transformation and remain 
correct, unlike estimators, for example. 

Coverage

82
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• Ideally, we have exact 
coverage, but in particular 
discrete distributions may not 
allow this 

• In which case we try to 
always err on the side of 
overcoverage 

• It can often be irksome to get 
the “step” exactly right when 
doing confidence intervals for 
discrete problems— do a 
small toy test if you’re unsure

Coverage with discreteness

83
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• Note— what we discussed so 
far does not completely 
determine the Neyman 
construction!  

• I chose to have an equal 
probability for X to be below 
and above the bounds 

• But if you want to set only 
upper limits, for example, 
you’ll choose to shift the 
bounds to get the right 
coverage

The Neyman construction

Up
pe

r L
im

it,
 𝛼

=0
.1

(L
ow

er
 L

im
it)

Neyman construction for 
a signal s 

x ~ Gaussian with 𝝻 = s+𝝻b 𝞂=1, 
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• If an experiment uses a cut on their 
result to decide between a one- or 
two-sided interval, the decision line 
causes the complete method to 
undercover 

• (In a similar vein, if an experiment 
re-runs its observation if it believes 
it is very unlikely according to H0 
will also undercover) 

Flip-flopping
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• Since a single Neyman 
construction guarantees 
coverage, one that yields a 
smooth data-determined 
interpolation between upper 
limits and two-sided intervals 
may be just the ticket!  

• FC uses the likelihood ratio as 
an  ordering parameter, R, to 
decide what observations to 
include first in the Neyman 
construction 

• Note: As defined, FC allows no 
nuisance parameters 

Unified Confidence Intervals

86

AKA Feldman-Cousins intervals
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• The unified construction may be extended to higher dimensions, but 
only at a cost— you have to know/define the distribution for your entire 
model space 

• The Profile Construction uses the profiled likelihood ratio instead— this 
means coverage is no longer guaranteed 

• Critically, this is not just a failure of asymptoticity— you’ll get this 
problem even with toyMC methods.  

• In particular, the method may fail if nuisance parameters are close to 
parameter boundaries or if they are strongly correlated with the signal

The Profile Construction
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Unified intervals with nuisance parameters
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Power Construction
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Constructing Confidence Intervals
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• The threshold we compute with 
the profile construction is the area 
where if our test statistic (the 
profile likelihood) exceeds it, we 
reject that hypothesis  

• The confidence interval is the 
union of all signal models we 
cannot exclude

The profile construction is hypothesis tests!
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• the toy simulations needed to compute 
the test statistic distribution include 
randomising all measured parameters  

• including calibration measurements and 
ancillary measurement terms 

• Simulations done for a set of signal 
strengths, and usually also for a range of 
signal shapes (varying mass or similar 
parameters)  

• However, no firm procedure exists for 
nuisance parameters 

• Fix them to best-fit values and be certain 
you are not using the true values? 

• Randomise them according to uncertainty 
risks  double-counting uncertainties

The Profile Construction

ℒ(s, ⃗θs , ⃗θb) = ℒsci(s, ⃗θs , ⃗θb) × ℒcal( ⃗θb) × ℒanc( ⃗θb)

92

What to do with nuisance parameters?
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- XENON used the best-fit values of 
nuisance parameters 

- In the latest XENON WIMP search, 
the robustness of this construction 
to mis-measuring nuisance 
parameters was also estimated 
(right)—changing the value to 
+-0.012 yielded a percentage point 
change in coverage 

- For comparison, the best-fit value 
was -0.004

The Profile Construction

ℒ(s, ⃗θs , ⃗θb) = ℒsci(s, ⃗θs , ⃗θb) × ℒcal( ⃗θb) × ℒanc( ⃗θb)

E. Aprile et. al (XENON). XENON1T dark matter data analysis: Signal 
and background models and statistical inference. Phys. Rev. D, 
99(11):112009, 2019. doi: 10.1103/Phys- RevD.99.112009. 93

What to do with nuisance parameters?
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• If the signal distribution is known along 
some variable, the maximum gap/
optimal interval method can incorporate 
this, even in the presence of an unknown 
background 

• Find the space between observed events 
containing the largest signal expectation, 
and find the largest signal compatible 
with this largest “gap”. 

• The method can be extended as 
“optimum interval” where you search for 
the largest interval containing 0,1,2 etc 
events 

• threshold for the best interval test 
statistic found via toyMC methods

Max Gap and Optimum Interval

S. Yellin. Finding an upper limit in the presence of an unknown 
background. Physical Review D, 66(3), Aug 2002. ISSN 
1089-4918. doi: 10.1103/physrevd.66.032005. 94
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• Probability may also be consistently interpreted 
as degree of belief— in essence, given 
everything you know, how much would you bet 
that something will happen 

• However, you have to introduce a prior— the  
degree of belief you held in A before doing the 
experiment 

• This allows the assignment of probability to in 
principle non-reproducible events  

• in particular the event “this physics parameter 
is X”, so a Bayesian analysis will return a 
probability for your hypotheses, which would 
not make sense in a frequentist interpretation

Bayesian Interpretation

P(A |D) =
P(D |A)P(A)

P(D)
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• Bayesian credible intervals express 
where the experimenter has a certain 
total amount of posterior belief 

• Computed by finding a region that 
integrates the posterior to the required 
value 

• Very often via toyMC methods 

• Bayesian and frequentist results will 
converge in the limit of infinite data, but 
in the meantime, it is not guaranteed  

• No analogue to coverage (and it does not  
require to have it)

Credible Intervals

96

emcee is a good place to start to make 
a posterior point cloud:  

https://emcee.readthedocs.io/en/
stable/

p(s, θ) =
ℒ(s, θ) ⋅ π(s, θ)

∫ ℒ(s, θ) ⋅ π(s, θ)dsdθ
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• A recent alternative proposed to the 
toyMC-based detector model, is to use the 
explicit full likelihood expression using 
efficient matrix multiplication+summation 

• An explicit model avoids troubles in 
template-morphing,  

• This method inherently requires your 
model to be 6-dimensional in the current 
formulation, which gives added power, in 
particular for higher exposures, at the 
expense of difficulty in model validation 

• Computation time is higher for a single 
best-fit with the full flamedisx model— 
not a problem for the best-fit but a 
challenge for toyMC estimates of test 
statistic distributions

High-dimensional explicit likelihood
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https://github.com/FlamTeam/flamedisx

Aalbers, Pelssers, Antochi, Tan and Conrad. “Finding Dark 
Matter Faster with Explicit Profile Likelihoods” Phys.Rev.D 102 
(2020) 7, 072010

https://github.com/FlamTeam/flamedisx
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• Provides runners, submitters 
for toyMC profile 
construction 

• And a flexible framework to 
add your own likelihood— 
define a functions for the 
likelihood and to generate data 
in a common form 

• Includes a full simplified lXe 
TPC-style likelihood! 

• Based on XENON1T and 
XENONnT SR0 WIMP 
analyses, with improved 
maintainable code

alea— current XENON tool
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https://github.com/XENONnT/alea/

https://github.com/XENONnT/alea/


For today
• Frequentist confidence 

intervals 

• The profile construction 

• A couple of tools
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Hands-on session: confidence 
intervals, profile construction


