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Summary of first topic

• We model our observations with a 
statistical model, usually in terms of 
probability distributions.  

• We choose test statistics that distil 
the information we wish to learn 
from the data 

• and often formulate questions in 
terms of hypothesis tests— given 
the data, should we favour one or 
the other? 

• A particularly important hypothesis 
test is whether your data agrees with 
the distribution you use! 
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For today

• Example analyses 

• Profile Likelihood 

• Asymptotic distributions 

• Look-Elsewhere effect
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24
• We seldom have completely specified 

hypotheses 

• Our background and signal models 
have uncertainties, parameterised by 
nuisance parameters ( )— you’ll see 
some examples in the next slides.  

• The global best fit we denote with  

• However, we also want to test other s
— for example s=0 for discovery 
significance or a range of s for 
confidence intervals.  

• In these cases, we set the other 
nuisance parameters to their 
conditional best-fit . 

θ

̂s, ̂θ

̂ ̂θ

Profiling Likelihoods & nuisance parameters

45

δlogℒ(s, ̂ ̂θ)/δθj = 0;



The likelihood relies on the 
model
• The validity of the inference relies on 

the underlying model 

• The signal model may be quite 
forgiving— if an excess is 10-20 
events, far tails are less significant 

• Experiments typically include 
uncertainties on background rates, but 
not always on the distribution used.  

• XENON1T added a “signal-like” 
background shape to its ER 
background model to lower the 
chance of overconstraining the model. 

• For XENONnT, this was replaced by 
a  more careful selection of nuisance 
parameter directions, and a stronger 
focus on pre-defined goodness-of-fit 
tests chosen for their power to 
discover mismodelling
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N. Priel et al. A model independent safeguard against background 
mismodeling for statistical inference. 2017(05):013–013, may 2017. 
doi: 10.1088/1475-7516/2017/05/013.



Counting Experiments

• “just” counting events— but the 
estimate of the background rate 
and acceptance can be as 
complicated as anything 

• If there is no signal/background 
overlap or complete overlap, this 
may be the optimal sensitivity  

• Otherwise, it might still be a 
worthwhile compromise if 
you’re worried about whether 
you can model your background 
correctly 
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DarkSide-50 532-day https://
arxiv.org/pdf/1802.07198

ℒsci(s, ⃗θs , ⃗θb) =
Poisson(Nsci |μb( ⃗θb) + μs(s, ⃗θs , ⃗θb))



However, shapes often matter
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On-Off likelihoods

• WIMP searches rarely get to 
turn off their signal 
completely  

• Directional dark matter 
searches and some axion 
searches, on the other hand 
can take representative data in 
a no/low signal and high 
signal state 

• Also common in indirect 
detection
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ℒsci(s, ⃗θs , ⃗θb) =
Poisson(Nsci |μb( ⃗θb) + μs(s, ⃗θs , ⃗θb)) ×

Poisson(Ncal |α × μb( ⃗θb))



Binned Likelihood

• With more than  events 
in each bin, you can use 
computationally efficient 
methods to compute test 
statistic distributions 

• Eases visualisation and 
goodness-of-fit 

• And simpler to share results 

• Minimal sensitivity loss if the 
bin width is small compared 
to the detector resolution

∼ 5
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ℒsci(s, ⃗θs , ⃗θb) =
Ns

∏
i=1

[Poisson(Ni |μb,i( ⃗θb) + μs,i(s, ⃗θs , ⃗θb))]
PandaX ionisation-only search, https://
arxiv.org/abs/2212.10067

https://arxiv.org/abs/2212.10067
https://arxiv.org/abs/2212.10067


Unbinned (extended) 
likelihood

• If the events are too few to fill 
bins, the unbinned likelihood 
promises the best performance 

• Might still have to rely on 
binned methods for goodness-
of-fit 

• if you rely on Monte Carlo 
methods to generate 
distributions, that can require 
a lot of statistics and be harder 
to validate
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ℒsci(s, ⃗θs , ⃗θb) = Poisson(Nsci |μb( ⃗θb) + μs(s, ⃗θs , ⃗θb)) ×
Ns

∏
i=1 [ μs

μs + μb
fs( ⃗xi |s, ⃗θs , ⃗θb) +

μb

μs + μb
fb( ⃗xi | ⃗θb)]

XENONnT first WIMP search



Likelihoods can be 
composed
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ℒ(s, ⃗θs , ⃗θb)Science run = ℒsci(s, ⃗θs , ⃗θb) × ℒcal( ⃗θb) × ℒanc( ⃗θb)

ℒ(s, ⃗θs , ⃗θb)tot = ℒ(s, ⃗θs , ⃗θb)tot × ℒ(s, ⃗θs , ⃗θb)tot × ℒshared(θ)
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• The log-likelihood for a number 
of gaussian-distributed numbers 
has the same form as the 
-formula (Wilks’ theorem) 

• It turns out that if a set of 
conditions that are quite often  
fulfilled, the distribution of the 
likelihood ratio converges to a 
-distribution with some number of 
free parameters 

• This can massively simplify your 
computations, and so it is worth to 
look through in detail

χ2

TM

χ2

Asymptotic Distributions

https://arxiv.org/abs/1911.1023753

A massive shortcut if you’re careful/lucky

q(s) = − 2 ⋅ log(
ℒ(s, ̂ ̂s)
ℒ( ̂s, ̂s)

)
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• As our example: the profile log-likelihood 

ratio test for a counting experiment with a 
known background but uncertain efficiency 

• Parameters:  

• Signal s 

• efficiency e 

• Fixed, known parameters:  

• Background expectation  

• efficiency uncertainty  

• Data:  

• Number of events N 

• efficiency estimate 

b

σe

emeas

Asymptotic Distributions

54
(L)(s, e) = Pois(N |s ⋅ e + b) × Gaus(emeas |e, σe)
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• Wilks’ theorem holds in the 
asymptotic case of infinite data, 
but convergence can often be 
quick:  

• Poisson counting with more 
than ca. 10 events 

• Gaussian measurements 

• However, if you have an unbinned 
likelihood, the important 
consideration is signal-like 
background events— for example 
seen with lXe TPC searches

Asymptotic Distributions

https://arxiv.org/abs/1911.1023756

What does “sufficiently data” mean?
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• As a mental shortcut— if under 
your null or signal hypothesis, 
parameters sometimes or often goes 
to a physical boundary, it will not 
behave asymptotically 

• This is very often the case e.g. if 
you’re looking for a signal with 
expectation value  

• If you are testing the hypothesis that 
the model that has the parameter at 
the boundary— for example that the 
signal is 0, you may be able to use 
Chernoff’s theorem if all other 
conditions are met

≥ 0

Asymptotic Distributions

<latexit sha1_base64="UsRo5G+Wqny/zo/Q4W01wuVRRmY=">AAACTHicbZBNaxRBEIZ7Vo1x/Vr16KVxETYIy8wSNBchGJHcjOAmgZ11qemtyTTp6Z5010iWZn6gFw/e/BVeckiQQHo3e8hXQcPL+1ZR1U9WKekojv9GrXv3H6w8XH3Ufvzk6bPnnRcvd52prcChMMrY/QwcKqlxSJIU7lcWocwU7mWHW/N87ydaJ43+TrMKxyUcaJlLARSsSUfkvaM1njoCcWhR+ZTwmPxWgVabPG8an0JVWXPc8DS3IHzS+EHQopA/BhP/+euXj0nD310Pp6gIemkB5NOybtYmnW7cjxfFb4tkKbpsWTuTzp90akRdoiahwLlRElc09mBJCoVNO60dVuFgOMBRkBpKdGO/gNHwt8GZ8tzY8DTxhXt1wkPp3KzMQmcJVLib2dy8KxvVlG+MvdRVTajF5aK8VpwMn5PlU2lRkJoFAcLKcCsXBQQuFPi3A4Tk5pdvi91BP3nfX/+23t38tMSxyl6zN6zHEvaBbbJttsOGTLBf7B87ZWfR7+gk+h+dX7a2ouXMK3atWisX7fG0Xw==</latexit>

f(q)
Cherno!→ 1

2
ω2
DOF=1 +

1

2
ε(µ̂)

58

What does “interior of the parameter space” mean?
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• If the model is degenerate for 
some parameter, the asymptotic 
approximation will not hold 

• This is quite common in physics! 
When the signal strength is 0, the 
model does not depend on any 
other signal parameter 

• This is another way of looking at 
the look-elsewhere effect, which 
we’ll look at later

Asymptotic Distributions
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What does it mean for parameters to be “identifiable”?
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• If the model tested is not a limit of 
the general hypothesis 

• Such as when testing between 
two disparate models 

• Or if your theory features a non-
zero fixed signal you wish to test 
against the no-signal hypothesis 

• You can always linearly add the 
two hypotheses’ models together 
with a new parameter, but then you 
introduce Non-identifiability at the 
boundary! 

Asymptotic Distributions

https://arxiv.org/abs/1911.1023762

What does it mean for models to be “nested”?
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• All our inference results are reliant on the 
true model being somewhere in our model 
space! 

• However, we should be cognisant that this 
is never guaranteed  

• If you have a mismodelling you are 
concerned about, you should test how much 
it can affect your results— you might well 
find that your method is robust to it, or you 
can add model uncertainties to represent  
this 

• Another way to increase robustness is to 
make your model simpler— a counting 
experiment makes fewer assumptions on 
the energy spectrum than if you include the 
energy information

Asymptotic Distributions

https://arxiv.org/abs/1911.1023763

The models still need to be correct :( 
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• Any gaussian-distributed 
measurements  

• Including histograms with high 
bin counts 

• unbinned likelihoods with 
significant signal-like backgrounds 

• Most common extra consideration 
is taking care of the parameter 
boundaries 

• The below paper presents some 
cases: 

Asymptotic Distributions

https://arxiv.org/abs/1007.1727

<latexit sha1_base64="Cjz/pA29814qehS1vFcjbPnTgjw="></latexit>

qupper limit(µ) =

{
q(µ) if µ̂ → µ

0 else
<latexit sha1_base64="TeQoUfzrqm6NtHqFEm52HlOY0q8="></latexit>

q(µ)unified =






→2 · L(µ,ˆ̂ω)

L(µ̂,ω̂)
if 0 ↑ µ̂

→2 · L(µ,ˆ̂ω)

L(0,ω̂µ=0)
else

Note that these three can 
be seen as the same test 
statistic if you always 
restrict  to be 
positive!

̂μ, μ
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Examples of when they may be used <latexit sha1_base64="pQY9Z24U4a8zGA8rp+EAeGCYicg="></latexit>

qdiscovery =

{
q(0) if 0 → µ̂

0 else
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• Your probability to roll 6 on a dice 
increases the more dice you get to 
roll 

• Similarly, if your experiment tests 
several signals, they will increase 
their chance to see unusual effects 
just by chance 

• Separate between “local” 
significance— the probability that 
one single signal model tests 
fluctuates to some significance 

• and “global” significance— the 
probability that any test fluctuates to 
that extent

The Look Elsewhere Effect

65

AKA trial factor AKA non-identifiable signal parameters



24The Look Elsewhere Effect

68

The trial factor might sometimes be rather small: 



Experimenter bias is a 
danger with few events

• With few events the effect can 
be drastic if you chance 
something in your analysis— 
the plot shows the 60% change 
in limit available to you 
between the best post-
unblinding and the worst post-
unblinding radial cut.  

• This is a necessary 
consequence of making your 
analysis sensitive to few 
events! 

• Further, with only some 
hundreds of events, and many 
variables, every event may well 
be an outlier in some space

69

Homeopathic poison
— the fewer events 
the greater danger



Experimenter bias is a 
danger with few events

• The most common 
experimenter bias mitigation 
method is “blinding”— not 
showing the signal-like region 
of parameter space until the 
analysis has been frozen 

• LUX developed a “salting” 
procedure where synthetic 
signals were made by 
stitching together genuine S1 
and S2 signals into full events 
and placing them in the data

70
Tyler Anderson “Salting as a Bias Mitigation
Technique in LZ”, presentation at LIDINE 2021



For today
• Example analyses: we saw 

how experiments compose 
analytical and other models 
to make their full statistical 
model 

• Profile Likelihood: we 
discussed minimising 
nuisance parameters only, 
if we wish to test some 
hypothesis 

• Asymptotic distributions: 
How useful they are, and 
the common failures we 
encounter 

• Look-Elsewhere effect: one 
of these effects
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Hands-on session: profile 
likelihood, comparison with the 
asymptotic: 


