Axion Searches

A partial overview of the experimental searches for axions and axion like particles

> SOUP School ,16 October 2024 Giovanni Carugno INFN Padova

Summary

- About Axion Physics
- Laboratory experiments
- Helioscopes
- Axion dark matter direct searches

Some Open Questions ...

- Despite remarkable success of:
 - Standard Model of particle physics (SM): discoveries of the weak gauge bosons, the top quark, tau neutrino, Higgs boson ...
 - Standard cosmological model (ΛCDM): Consistent with all data from the Cosmic Microwave Background, large-scale structure, gravitational lensing, supernovae, clusters, light element abundances, ...
- No doubt about need of new knowledge in physics:
 - CPT invariance of SM -> after Big Bang the Universe can't even exist!
 → Matter-Antimatter asymmetry (violations of barion number, CP and equilibrium)
 - QCD Lagrangian contains a CP violating term (strong CP problem)
 - \rightarrow EDM for hadrons \neq 0
 - ightarrow there should be CP violation in the strong sector
 - we don't understand the *physics* of dark matter, dark energy, or inflation.
 - What is the Dark Matter? No particle of SM can explain DM...
 - Who is the Inflaton?
 - What is the origin of Cosmic Acceleration?
 - Dark Energy or Modification of General Relativity?
 - A or dynamical component (e.g., an ultra-light scalar field)?
 - How DM, DE and inflaton fit into extensions of the Standard Model of Particle Physics?
- Beyond GR, ST, GUT, SuGra etc. towards Quantum Gravity?
 - Very hard to devise experiments to test theories

The strong CP problem in QCD

A (permanent) neutron EDM d_n that violates CP is expected from simple arguments:

• Neutron: neutral particle but consists of charged quarks

A

If
$$\delta \text{H}0.1 \text{ r}_n \rightarrow d_n \text{H}4 \ 10^{-14} \text{ e cm}$$

experiment says ${\rm d}_{\rm n}\delta$ 3 10^{-26} $\,$ e cm

• from low energy effective lagrangian of QCD in standard model

$$\mathcal{L}_{\theta \text{QCD}} = \frac{\theta_{\text{QCD}}}{32\pi^2} \text{Tr } G_{\mu\nu} \tilde{G}^{\mu\nu}$$

a term that violates CP (non trivial θ -vacua)

• QCD calculations (perturbative and lattice) lead to a nEDM

$$\overset{-\pi}{\overset{0}{\scriptstyle n}} \overset{n}{\overset{n}{\scriptstyle n}} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n}} \overset{n}{\overset{n}{\scriptstyle n}} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle n}} \overset{n}{\scriptstyle n} \overset{n}{\scriptstyle$$

 If besides QCD one includes the weak interactions, the quark mass matrix (CKM matrix) is non-diagonal and complex

$$\mathcal{L}_M = \overline{\psi_{iR}} M_{ij} \psi_{jL}$$
+h.c. CP is conserved if M_{CKM} = (M_{CKM})*

To diagonalize M one must perform a chiral transformation by an angle of Arg det M which changes θ into

$$\theta_{total} = \theta_{QCD} + Arg det M$$

Solutions to the Strong CP problem

R.D. Peccei Lect.Notes Phys. 741, 3-17 (2008)

• The strong CP problem can be stated as follows:

why is the angle θ_{total} , coming from the strong and weak interactions, so small?

$$\theta_{total} \approx 10^{-10}$$

- There are only three known classes of solutions to the strong CP problem:
- 1) Anthropic principle: θ_{total} is small from initial conditions (fine tuning)
- 2) CP is broken spontaneously and the induced θ_{total} is small (the models which lead to $\theta_{total} \approx 10^{-10}$ are rather complex and often are at odds with cosmology)

QCD AXIONS

- Introducing a global $U(1)_{PO}$ symmetry, which is necessarily spontaneously • $\psi
 ightarrow e^{ilpha\gamma_5}\psi$ broken, replaces: $a(t,x)/f_a$ θ
 - Static CP Viol. Angle

Dynamical CP conserving Axion field

and, effectively, eliminates CP violation in the strong sector

 \Rightarrow

$$L_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \widetilde{F}_{a\mu\nu} \qquad \Longrightarrow \qquad L_a = \frac{a}{f_a} \frac{g^2}{32\pi^2} F_a^{\mu\nu} \widetilde{F}_{a\mu\nu}$$

 f_a is the scale of the breaking of the U(1)_{PQ} symmetry, while a(x) is the Nambu-Goldstone axion field associated with the broken symmetry [Weinberg, Wilczek]

- Axion particles are excitations of a(t,x)• Almost model independent prediction: a \square^0 and $m_{\pi} f_{\square} \cong m_a f_a$
- QCD axion mass with per-mille accuracy! ٠

M. Gorghetto, G.J. Villadoro. High Energy Phys. 2019, 33 (2019).

$$m_a = 5.691(51)\,\mu {\rm eV}\,\frac{10^{12}~{\rm GeV}}{f_a}$$

...Axion Tentative Solutions...

- Axions as solution of strong CP problem in QCD
 - neutron EDM ($d_n < 10^{-26} e cm$)
 - Why so small? (QCD prediction 10⁻¹⁶ e cm)
 - Solution as dynamical (CP conserving) axion field
 - Axion models DSKZ and SKVZ
- Axions as CDM in cosmology
 - Need for Dark Matter from precision cosmology
 - Axion can be efficiently produced in the Early universe
 - A light axion (m_a < eV) can solve DM mystery
 - Axion & Cosmology, Axion & Astrophysics
 - DM Halo (different models)
 - Cosmic Axion Background (CaB)

Axion as source of matter-antimatter asymmetry

- Kinetic term θ from explicit breaking of the axion shift symmetry in the early Universe
- Phys. Rev. Lett. 124, 251802 (2020); Phys. Rev Lett. 124, 111602 2020
- Axion field driving inflation

Axions?

PHYSICAL REVIEW D

VOLUME 18, NUMBER 5

1 SEPTEMBER 1978

Do axions exist?

T. W. Donnelly, S. J. Freedman, R. S. Lytel, R. D. Peccei, and M. Schwartz Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305 (Received 21 March 1978)

We critically examine various existing experiments which could provide evidence for the axion. Although our conclusions regarding the existence of this particle are somewhat pessimistic, we discuss other possible experiments which could throw additional light on this question.

• The Peccei Quinn Weinberg Wilczek (PQWW) axion model:

PQ simmetry breaking at the electroweak scale $f_a \sim 250 \text{ GeV} \rightarrow m_a \sim 100 \text{ keV}$

R. Peccei,H.R. Quinn, PRL38(1977)1440 R. Peccei,H.R. Quinn, PRD16(1977)1791 S. Weinberg, PRL40(1978)223 F. Wilczek, PRL40(1978)279

Searched for and ruled out in several beam dump experiments.

FIG. 2. Schematic of the SLAC beam-dump experiment showing the location of the detector and shielding in relation to the end station A beam dump.

PRD 18, 1607 (1978)

Other models for the axion

However, other axion models (QCD axion) have been devised

Dine-Fischler-Srednicki-Zhitnitskii (DFSZ)	Kim-Shifman-Vainstein-Zakharov(KSVZ)
M.Dine, W.Fischler, M.Srednicki, Phys.Lett.104B(1981)199	J.E.Kim,PRL43(1979)103
 A.K.Zhithitsky, Sov.J.Nuci. Phys. 31(1980)260 2 extra Higgs doublets 	 M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, NPB166(1980)493 New extra heavy quark
 New complex scalar 	New complex scalar

- solutions to the strong CP problem that conveniently avoid all constraints from laboratory searches and stellar evolution by making f_a arbitrarily large
 - low mass (m_a < eV) and very weak couplings for f_a >> v_{weak}
- e.g. for PQ symmetry breaking at the grand unification scale 10¹⁵ GeV, all axion production and interaction rates suppressed by 25 orders of magnitude relative to those of the PQWW axion
- It was born the idea of the "invisible axion", that continues to evade all current experimental searches
- Models list not exhaustive, axions can be embedded in SUSY or GUT
- Fortunately, the finite age of the Universe implies a limit on how large f_a, or equivalently how small m_a, can be
 - could affect cosmology
 - could affect stellar evolution

The axion •

- could mediate **new long range forces**
- could be produced in terrestrial laboratory
- could be a main component of Dark Matter

Axion interactions

• Several interactions are possible

Axion interactions 2

 Axion interactions are model dependent, normally small differences between models

Axion photon photon

$$C_{a\gamma\gamma} = -\left(\frac{\alpha}{\pi} \frac{g_{\gamma}}{f_{a}}\right) a\vec{E} \cdot \vec{B} = -g_{a\gamma\gamma}a\vec{E} \cdot \vec{B}$$

$$g_{\gamma} = 0.36 \text{ (DFSZ)}$$

$$g_{\gamma} = -0.97 \text{ (KSVZ)}$$

$$g_{agg} = g_{g} \frac{\partial}{\rho} \frac{m_{a}}{m_{\rho} f_{\rho}}$$

Axion electron electron

$$a - - - \underbrace{e}_{e} L_{aee} = -g_e \overline{eig}_5 ea \qquad g_e \gg \frac{m_a m_e}{m_\rho f_\rho} = 4.07 \ 10^{-11} m_a \qquad \text{(DFSZ)}$$

 $g_e \sim 0$ (Strongly suppressed) (KSVZ)

All couplings are extremely weak!

Axion interactions 3

Axion interactions are now model dependent

Axion photon photon

$$C_{a\gamma\gamma} = -\left(\frac{\alpha}{\pi} \frac{g_{\gamma}}{f_a}\right) a\vec{E} \cdot \vec{B} = -g_{a\gamma\gamma}a\vec{E} \cdot \vec{B}$$

$$g_{\gamma} = 0.36 \text{ (DFSZ)}$$

$$g_{\gamma} = -0.97 \text{ (KSVZ)}$$

• If the axion mass is lighter than 2 m_e , we can calculate its lifetime

$$t(a \rightarrow 2g) = \frac{2^8 \rho^3}{g_g^2 \partial^2} \frac{f_a^2}{m_a^3} @ \frac{3.65 \times 10^{24}}{g_g^2} \left(\frac{\text{eV}}{m_a}\right)^5 \text{s}$$
$$@ \frac{0.8 \times 10^7 t_U}{g_g^2} \left(\frac{\text{eV}}{m_a}\right)^5$$

Where $t_U \approx 4 \ 10^{17}$ s is the age of the Universe

For $g_{\gamma} \approx 1$ an axion of mass 24 eV has the lifetime corresponding to t_{U} .

Cosmological axion origin

- In the early universe axions are produced by processes involving quarks and gluons
 -> Hot dark matter (BAD)
- Other mechanisms in the early Universe are non-thermal: the vacuum realignment mechanism and the decay of topological defects (axion strings and domain walls)
 → Cold dark matter (GOOD)
- Vacuum realignment mechanism: relaxation of the axion field after breakdown of the PQ symmetry → The expected cosmic mass density of axions depends on whether inflation happens after or before PQ breakdown

Allowed regions of mass (decay constant)

- These regions obtained by **assuming axion saturate DM density**. Lower values of m_a would overproduce DM while higher masses would lead to subdominant amount of axion DM
- If axions exist at least a fraction of DM are axions

The pre- and post- inflationary scenarios

- Difference between the pre- and post- inflationary scenarios is **predictability**:
 - In **pre-inflationary** there are **two continuous free parameters**, an angle θ and the mass m_a, to obtain the observed dark matter density
 - In **post-inflationary** there is one continuous parameter, m_a, and a discrete one N.
 - \succ In principle the observed DM density predicts the value of m_a
 - > Due to nonlinearities, computing this mass accurately is a real challenge
 - Recent works make use of large static lattice simulations

Post-inflationary scenario

axion strings axion energy densit

simulation volum Hubble volume

Check for update

Can we detect axions?

- Searching for axion extremely challenging
- Exploit coherence effect over macroscopic distance/long times
- Most promising approach: use axion-photon-photon vertex

Primakoff effect:

scattering from an electromagnetic field (virtual photon)

In the presence of an **external field** (magnetic or electric) the **axion and the photon mix** and give rise to **oscillation/conversion**

- Higher magnetic field are easily obtainable than electric fields.
- Strong magnetic fields are key ingredient of all axion searches

$$-g_{a\gamma\gamma}a\vec{E}\cdot\vec{B}$$
$$g_{agg} = g_g \frac{\partial}{\partial p} \frac{m_a}{m_b f_b}$$

Axion Like Particles (ALPs)

- An ALP is a particle having interactions similar to the axion, whose origin is expected to be similar, but with different relation, respect to the axion, between coupling constants and mass → in general UNRELATED
- For example, string theory predicts a large spectrum of ALPs, pseudo Nambu Goldstone boson of a symmetry spontaneously broken at very high energy
- For example, in the case of the photon coupling

$$L_{ALP} = \frac{1}{2} \P^m a \P_m a - \frac{1}{2} m_{ALP}^2 a^2 - g_{agg} \stackrel{\square}{E} \times Ba$$

With $g_{a\gamma\gamma}$ a free parameter to be determined experimentally

- Experimental searches are mainly directed to ALPs, in order to relax the coupling parameter. Experiments looking for the ALPs are, in principle, sensitive also to the axions.
- We will often be using the word axion in a generic way including ALPs, explicitly saying QCD axion for that ALP that solves the strong CP problem

WISPs

- Weakly Interacting Slim Particles include a much wider lists:
 - Axion and Axion Like Particles
 - Hidden Photons
 - Milli Charged Particles
 - Chameleons, massive gravity scalars
- Many of them share properties of the axion, and in principle could be searched for by the experiments that will be showed
- It will be difficult to attribute a possible discovery signal to exactly the QCD axion → as many different signals as possible needed in order to discriminate between QCD axion and ALPs

Main detection strategies

A global list – not necessarily complete

A. Pure laboratory experiments:

- 1. Polarization experiments
- 2. Light shining through walls (LSW)
- 3. Fifth force measurements
- B. Solar helioscopes
- C. Dark matter haloscopes and other DM receivers
- D. Astrophysics, cosmology: stellar evolution/dynamics, γ ray transparency

Detection schemes

Most of the searches based on the axion-photon coupling

Current constraint – Axion Photon Coupling

$$v_a = 0.24 \left(\frac{10^{-6} eV}{m_a}\right) \,\mathrm{GHz}$$

https://cajohare.github.io/AxionLimits/docs/ap.html

Comparison

Lab Experiments	Helioscopes	Haloscopes	
Axion Like Particle	ALPS & QCD Axion	ALPS & QCD Axion	
Wide band experiment	Wide band experiment	Resonance experiment	
Optical photons	X rays photons	Microwave photons	
Model independent	Model dependent	Strong model dependency	
Low axion flux	Medium axion flux	High axion flux	
Low sensitivity to alps coupling	Good sensitivity to alps coupling; high mass axion	Reaches axion models	
(a) B_0 Wall B_0 Photon Laser γ a $Magnet$ Magnet $Magnet\leftarrow L \rightarrow \leftarrow L \rightarrow$	Sun magnet	Preamp GHz GHz GHz Magnet Magnet Magnet Magnet	

[A] Pure laboratory experiments

Polarization experiments

Light shining through walls

Fifth force measurements

[A.1] Pure lab: Polarization experiments

- Seminal paper by Maiani, Petronzio and Zavattini (1986)
- Experiments aiming at measuring the magnetic birefringence of vacuum (QED)
- A linearly polarised optical beam traverses a static dipolar magnetic field region: an ellipticity ψ and a dichroism ρ indicate virtual and real production of axions

Two independent measurements: rotation $\rho~$ and ellipticity ψ

[A.1] Pure lab: Polarization experiments II

 A linearly polarised optical beam (frequency ω) traverses a static dipolar magnetic field region: an ellipticity ψ and a dichroism ρ indicate virtual and real production of axions

Index of refraction of vacuum

$$n_{vacuum} = 1 + (n_B - ik_B)_{field}$$

$$\Delta n = n_{\parallel} - n_{\perp} \neq 0$$
$$Dk = k_{\parallel} - k_{\wedge} \neq 0$$

$$\Delta n^{(QED)} = 4 \times 10^{-24} \, \mathrm{T}^{-2}$$

Natural Heaviside – Lorentz units

Measured effects

Relation with axion parameters

$$\mathcal{F} = \frac{2\rho LN}{l} Dk \sin 2\mathcal{J} \qquad |\Delta k| = 2\left(\frac{g_{a\gamma\gamma}B_0L}{4}\right)^2 \left(\frac{\sin x}{x}\right)^2 \qquad x = \frac{m_a^2 L}{4\omega}$$
$$\mathcal{Y} = \frac{\rho LN}{l} Dn \sin 2\mathcal{J} \qquad |\Delta n| = \frac{g_{a\gamma\gamma}^2 B_0^2}{2m_a} \left(1 - \frac{\sin 2x}{2x}\right)$$

N – number of passes, L – length of magnetic field region ϑ – angle between light polarization and magnetic field B_0

From two independent measurement we get coupling constant g_{avy} and mass m_a

[A.1] Pure lab: Polarization experiments III

 A linearly polarised optical beam (frequency ω) traverses a static dipolar magnetic field region: an ellipticity ψ and a dichroism ρ indicate virtual and real production of axions

High magnetic dipolar field B

Optical cavity to **amplify** signal: Fabry Perot resonator with **finesse F**

$$y, r \mu B^2$$

Ultra high sensitivity polarimetry: modulation of the effect for heterodyne/homodyne detection scheme

Peak sensitivity depends on magnet length L

$$m_a \notin \sqrt{\frac{2\rho W}{L}} \gg 1 \,\mathrm{meV}$$

Polarization experiments apparatuses

PVLAS @ Legnaro (1992 - 2008)

Fabry-Perot N ~ 50 000

5 T Rotating Superconducting Magnet

BMV @ Toulouse (going on)

Fabry Perot N ~ 300k

Pulsed Magnets **PVLAS @ Ferrara (2009-2019)** Rotating permanent magnets Fabry Perot N ~ 500k

Other apparatuses: Q&A (Taiwan), OSQAR (CERN)

Experimental scheme – Heterodyne (PVLAS)

Modulation of the effect allows to increase sensitivity

$$I_{Tr} = I_0 \stackrel{\acute{e}}{\oplus} S^2 + (y(t) + h(t) + \partial_s(t))^2 \stackrel{i}{U}$$

= $I_0 \stackrel{\acute{e}}{\oplus} S^2 + (h(t)^2 + 2y(t)h(t) + 2\partial_s(t)h(t) + ...) \stackrel{i}{U}$
signal noise
$$I_{TR}(v) \stackrel{\uparrow}{\eta^2/2} \stackrel{I}{\eta^2/2} \stackrel{I}{\eta^2/2$$

$$\psi(t) \propto \frac{\pi L N}{\lambda} B^2 \sin 2\theta(t)$$

Modulations:

- Field direction
- Field amplitude
- Polarization direction

Integration with time allows to look for weak signal since noise scales as 1/Vt

PVLAS @ Ferrara

- A new redesigned apparatus with respect to Legnaro
- Based on two permanent magnet 1-m long, 2.5 T rotating up to 10 Hz (reduced 1/f noise)
- Ultra high finesse optical cavity: L = 3.3 m; F = 770 000; amplification factor N = 450 000
- Optics suspended on a single granite optical table 4.8 m long

Final results

 $\Delta n^{(\text{PVLAS}-\text{FE})} = (12 \pm 17) \times 10^{-23}$ @ B = 2.5 T $|\Delta \kappa|^{(\text{PVLAS}-\text{FE})} = (10 \pm 28) \times 10^{-23}$ @ B = 2.5 T.

Physics Report 871, 1 (2020)

PVLAS total integration time 5 10⁶ s

PVLAS @ Ferrara

Complete apparatus

Vacuum chambers

Movable mirror holder

[A.2] Pure lab: light shining through walls (LSW)

- **Production-detection type**: seminal ideas in Okun (1982), Sikivie (1983), Ansel'm (1985), Van Bibber et al. (1987)
- Due to their **very weak interaction** axion may **traverse any wall** opaque to most standard model constituent
 - Axion can transfer information through a shield
 - Axion can convert back regenerate photons behind a shield

Pure laboratory: LSW

Conversion probability in a magnet

$$P = \frac{1}{4} (g_{agg} B_0 L)^2 \left| \frac{\sin x}{x} \right|^2 \gg \frac{1}{4} (g_{agg} B_0 L)^2$$

Total probability

$$P(g \to a \to y) = P^2 \propto g_{agg}^4$$

Figure of merit
$$ext{sens}(g_{a\gamma\gamma}) \propto rac{1}{BL} rac{\omega}{P^{1/4}} rac{N^{1/8}}{t^{1/8}}$$

Coherent process

$$x = \frac{m^2 L_a}{4W} << 1$$

Phase difference between axion and photon fields

Coherence can be tuned using a buffer gas in the second magnet

- High magnetic field B
- Long magnets L
- High laser power P
- Ultra low noise N receiver

(Some) LSW apparatuses

BFRT (Brookhaven-Fermilab-Rochester-Trieste) 1991 - 1992

Multipass cavity

Two 3.7 T Magnets

OSQAR @ CERN

Spare LHC Dipoles 9 T over 14.3 m

20 W cw Laser

State of the art **CCD** detector

Resonant LSW: ALPS II @ DESY

 Resonantly enhance production and regeneration process by using matched Fabry Perot (FP) cavities within both magnets

This is the task of the ALPS II project in DESY – Hamburg

- 120 + 120 m resonant Fabry Perot cavities
- 12 + 12 High magnetic field HERA magnets
- Transition Edge low noise sensor (or optical heterodyning)

Resonant LSW: ALPS II @ DESY

Improvement with respect to previous generation experiment

Parameter	Scaling	ALPS-I	ALPS-IIc	Sens. gain
Effective laser power $P_{\rm laser}$	$g_{a\gamma} \propto P_{\rm laser}^{-1/4}$	$1\mathrm{kW}$	$150\mathrm{kW}$	3.5
Rel. photon number flux n_γ	$g_{a\gamma} \propto n_{\gamma}^{-1/4}$	$1~(532\mathrm{nm})$	$2~(1064\mathrm{nm})$	1.2
Power built up in RC $P_{\rm RC}$	$g_{a\gamma} \propto P_{reg}^{-1/4}$	1	40,000	14
BL (before & after the wall)	$g_{a\gamma} \propto (BL)^{-1}$	$22\mathrm{Tm}$	$468\mathrm{Tm}$	21
Detector efficiency QE	$g_{a\gamma} \propto Q E^{-1/4}$	0.9	0.75	0.96
Detector noise DC	$g_{a\gamma} \propto DC^{1/8}$	$0.0018{ m s}^{-1}$	$0.000001 \mathrm{s}^{-1}$	2.6
Combined improvements				3082

Among the challenges to be addressed:

- Frequency matching of two high finesse FP cavity (mode matching by design)
- Single photon detection with ultra low noise
- Adaptation of HERA magnets (curved) to linear cavity

ALPS II: status / progress

Longest storage time Fabry Perot cavity ever!

Length: 124.6m, FSR: 1.22 MHz Storage time: 7.04 ms

 β – resonant enhacement vs single pass

Heterodyne sensing

- Mix weak signal with a frequency f shifted local oscillator
- → beat note signal
- Detection of a photon flux corresponding to $5 \cdot 10^{-21}$ W demonstrated.
- Sensitivity of 10⁻²⁴ W demonstrated.

Z. Bush et al., Phys. Rev. D 99, 022001 (2019)

The ALPS II First Science Run | Aaron Spector | Patras 18 | Rijeka, Croatia | July 6, 2023

Microwave LSW

 $P_{\rm sig} = 9.8 \cdot 10^{-25} \text{ W}$ $P_{\rm em} = 47.9 \text{ W}$ $|G|_{\rm max} = 0.94$

35

Pure Lab: results and perspectives

Excluded regions in the axion-photon coupling $g_{a\gamma\gamma}$ vs mass

- None of these experiments capable of exploring the QCD axion model
- They set exclusion regions for Axion Like Particles coupling in a truly independent manner
- ALPS II will increase physics reach by several orders of magnitude, exploring regions where hints are present
- STAX Italian LSW effort using high power microwave sources
[A.3] Pure lab: fifth force experiments

Very light particles with weak couplings to ordinary matter, such as axions or axionlike particles, can mediate long-range forces between polarized and unpolarized fermions. Different type of interactions: mass-mass, spin-mass, spin-spin

ARIADNE

US based collaboration developing a new experimental apparatus for spin – spin interaction with expected improvement in sensitivity by two orders of magnitude

The axion as a mediator of fifth forces?

Moody and Wilczek suggests that the axion mediates spin-dependent forces.

PHYSICAL REVIEW D

VOLUME 30, NUMBER 1

1 JULY 1984

New macroscopic forces?

J. E. Moody^{*} and Frank Wilczek Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 17 January 1984)

FIG. 2. Dimensionless axion couplings (at scale λ_A) as functions of F and θ . Long dashed lines are $G_{NN}/4\pi$ for $\theta = 10^{-8}$ and $\theta = 10^{-14}$. Short-dashed lines are $G_{Ne}/4\pi$ for $\theta = 10^{-8}$ and $\theta = 10^{-14}$. Solid diagonal line is $G_{ee}/4\pi$. Gravitational coupling between two nucleons $(M_N/M_{\rm Pl})^2$ shown for comparison.

This idea opens the way to different approaches.

New table-top experiments can be performed:

- High precision measurements
- Broadband axion detection
- Sensitive to any pseudo-scalar boson

Experimental Approach

The axion mediates an interaction between mass and spin : the $g_p g_s$ coupling (scalar-pseudoscalar or monopolo-dipole).

$$V_{md}(\boldsymbol{r}) = \frac{\hbar g_p^e g_s^N}{8\pi m_e c} \Big[(\boldsymbol{\hat{\sigma}} \cdot \boldsymbol{\hat{r}}) \Big(\frac{1}{r\lambda_a} + \frac{1}{r^2} \Big) \Big] e^{-\frac{r}{\lambda_a}} , \quad \boldsymbol{U} = \mu_e \boldsymbol{\hat{\sigma}} \cdot \boldsymbol{B}$$

Effective field:
$$\boldsymbol{B}_{\text{eff},md}(\boldsymbol{r}) = -\frac{g_p^e g_s^N}{4\pi ec} \boldsymbol{\hat{r}} \Big(\frac{1}{r\lambda_a} + \frac{1}{r^2} \Big) e^{-\frac{r}{\lambda_a}}$$

Detector and Source

Noise and sensitivity

The main sources of noise are the crystal and the SQUID

•
$$S_B^{(\text{GSO})}(\omega) = \frac{4\mu_0 k_B T \chi \tau_M}{V} \to B \simeq 1.2 \times 10^{-16} \,\text{T}/\sqrt{\text{Hz}}$$

• $S_B^{(\text{SQ})}(\omega) = \frac{1}{(n\pi r^2)^2} \frac{(L_i + L_p)^2}{M_i^2} S_{\phi}(\omega) \to B \simeq 7.3 \times 10^{-16} \,\text{T}/\sqrt{\text{Hz}}$

Measures are compatible with the SQUID noise estimation: Main noise = SQUID noise. \downarrow $\chi S_B^{1/2} = \int_V \rho_N \boldsymbol{B}_{eff}(\boldsymbol{r}) dV$

How is it possible to reach the $\theta = 10^{-10}$ limit? \downarrow 4 orders of magnitude improvement in respect of this measurement. ~ 8 to reach the predicted $\theta \sim 10^{-14}$ level.

Lab Experiments – Fifth Force

Axion-like particles can mediate forces between baryons that compete with gravity at distances 1/m_a and have been constrained by precision measurements of Newton's law and searches of violations of equivalence principle

The **QUAX collaboration** has recently used a novel scheme to search for the **monopole-dipole** (mass – spin) force coupled to *electron*-spins

 A variable macroscopic ALP field generated by moving lead masses resembles a magnetic dipole interaction with electrons in a paramagnetic salt, thus acting as an "equivalent" magnetic field

QUAX gp-gs N. CRESCINI et al. PHYS. REV. D 105, 022007 (2022)

A SQUID is used to detect the magnetization change

[B] Detection of axion from the Sun

Helioscopes

[B] Detection of axion from the Sun

- Helioscope: originally proposed by P. Sikivie (1983)
- Axion produced in the Sun by the **Primakoff process**: **blackbody photons** in the EM fields associated with stellar plasma (also other mechanisms through electron coupling)
- Thermal axion spectrum with mean energy 4.2 keV (X rays)
- Axion production rate depends on Solar model and production model
- Axion converted to X rays in terrestrial detectors

[B] Detection of axion from the Sun

Conversion probability in the detecting magnetic field

$$P = \frac{1}{4} (g_{a\gamma\gamma}BL)^2 |F(q)|^2$$

$$F(q) = \left(\frac{2}{qL}\right)^2 \sin^2\left(\frac{qL}{2}\right)$$

$$q = k_{\gamma} - k_a \approx \frac{m_a^2}{2\omega}$$

The factor **F(q)** ~ **1 reflects the coherence** between axion and produced x rays. Can be changed with **buffer gas**.

Figure of merit $sens(g_{a\gamma\gamma}) \propto rac{b^{1/8}}{B^{1/2}L^{1/2}A^{1/4}t^{1/8}}$

- *F*(q) ~ 1 for masses < 10 meV
- With buffer gas good up to 1 eV
- Scheme to determine *m*_a
- High magnetic field B
- Long magnets L
- Large bore A
- Ultra low background *b* X-ray receiver
- Sun tracking

Detection of axion from the Sun - apparatuses

- First experiment performed in **Brookhaven in 1992** by the BFR collaboration
 - 2.2 T fixed magnet Proportional Chamber as detector
- Second generation experiment in Tokyo SUNICO
 - 4 T magnet on a rotating platform

The CAST experiment (CERN Axion Solar Telescope)

- 10 m 9 T LHC prototype magnet pointing to the sun with some tracking capability
- So far most sensitive experiment looking for axion-like particles

Solar axions can be detected also by other techniques

- Primakoff-Bragg conversion in crystalline detectors
- Ionisation detectors via axioelectric effect (different axion coupling)
- In general competitive only for axion electron coupling studies

CAST results

- 9 T LHC magnet 9.3 m long
- Tracking of the Sun for several hours per day
- X ray focusing optics to increase SNR
- Low background techniques employed
- First Observational program 2003 2011 (vacuum + gas)
- New vacuum run 2013 2015 with improved optics and detector
- Total tracking exposure 1133 hours

Last CAST results published in Nature Physics May-2017 Nature Phys. 13 (2017) 584-590

Enabled by the IAXO pathfinder system

Record background rate < 0.003 counts per hour in the signal region

Prospects: the IAXO experiment

- The International AXion Observatory proposal is a dramatic push up of CAST performances:
- Next generation "axion helioscope" after CAST
- Purpose-built large-scale magnet
 >300 times larger B²L²A than CAST magnet
 Toroid geometry
 8 conversion bores of 60 cm Ø, ~20 m long
- Detection systems (XRT+detectors)
 Scaled-up versions based on experience in CAST
 Low-background techniques for detectors
 Optics based on slumped-glass technique used in NuStar
- ~50% Sun-tracking time
- Large magnetic volume available for additional "axion" physics (e.g. DM setups)

IAXO intermediate step

BabyIAXO Overview

- Intermediate experimental stage before IAXO
 - Two bores of dimensions similar to final IAXO bores → detection lines representative of final ones.
 - Magnet will test design options of final IAXO magnet
 - Test & improve all systems. Risk mitigation for full IAXO
- Physics: will also produce relevant physics outcome
 - FOM (SNR) ~100 times larger than CAST

DESY. (Baby)IAXO | Uwe Schneekloth | PATRAS 2023

iЛXO

Helioscopes: results and perspectives

- Helioscopes results competitive with Astrophysics limits but much less model dependent
- Limits on other couplings have been obtained too (not presented here)
- IAXO and BabyIAXO will be exploring important regions where hint of astrophysics origin are present

 The physics reach of IAXO will be covering a large and significant range of the QCD axion mass span

[C] Haloscopes – Galactic axions

Magnetic haloscopes

Dielectric haloscopes

CDM local distribution

1) Coarse grained DM velocity distribution for an Equivalent MW

• Aquarius simulation http://wwwmpa.mpa-garching.mpg.de/aquarius/

2) Fine grained DM velocity distribution :

- [Y. Sofue, Rotation curve od the Milky Way and dark matter density, *Galaxies* 8, 37(2020)]
- DM can have additional structures on small scales:
 - if axions continuously fall into galaxies they would form causitc rings [Sikivie 2011]
 - If axion DM density is dominated by few local streams, ts velocity distribution can be narrower by many orders of magnitude

Halo Dark Matter Axions

DM density $\rho = 0.4 \text{ GeV/cm}^3 \rightarrow n_a = 3 \text{ 10}^{11} \text{ axions/cm}^3 \rightarrow \text{treat DM axions as a classical filed}$

Axions in the galactic halo

- In order to explain galaxy rotation curves, a halo of dark matter is hypothesized
- Accepted value for local dark matter **density**

 $\rho_{DM} \approx 0.3 - 0.45 \text{ GeV/cm}^3$

- Cold dark matter component is thermalized and has a Maxwellian velocity distribution, with a dispersion σ_v ≈ 270 km/s
- There might be a nonthermalized component with sharper velocity distribution

- Axion can be a dominant component of the galactic DM halo
- Its occupation number is large

 $n_a \approx 3 \times 10^{14} \left(\frac{10^{-6} eV}{m_a} \right)$ axions/cm³

 It can be treated as a classical oscillating field with frequency given by the axion mass

$$\frac{\omega_a}{2\pi} = 2.4 \left(\frac{10^{-6} eV}{m_a}\right) \qquad \text{GHz}$$

• It has coherence length and time $\lambda = 1400 \left(\frac{10^{-6} eV}{m_a}\right) m$ $t = 5 \left(\frac{10^{-6} eV}{m_a}\right) ms$

[C] Haloscopes – Galactic axions – Sikivie Type

- Search for axions as cold dark matter constituent
- Original proposal by P. Sikivie (1983)
- DM particles converted into photons inside a magnetic field (Primakoff effect), sensitivity to $g_{a\gamma\gamma}$
 - The mass of the DM particle determines the frequency of the photons to be detected. For axions we are in the microwave range.

$$hv = E_{a} = m_{a}c^{2}\left(1 + \frac{1}{2}\beta_{a}^{2}\right) = m_{a}c^{2}(1 + O(10^{-6}))$$

 β_a ~10⁻³ axion velocity

• Use a microwave cavity to enhance signal. Cavity must be tuned to axion mass. Being this unknown, tuning is necessary: very time consuming experiment!

Haloscopes – Galactic axions

- Search for axions as cold dark matter constituent
- Original proposal by P. Sikivie (1983)
- DM particles converted into photons inside a magnetic field (Primakoff)
 - Expected signal a nearly monochromatic line.
 Broadened by the thermal distribution of DM in the Milky Way

$$\frac{DE}{E} \approx 10^{-6} = 1/Q_a$$

- Possible very sharp component due to nonthermalised axion falling in and out of the Milky Way $\frac{DE}{E} \approx 10^{-11}$
- Power proportional to the number density and the square of the axion-photon coupling

$$P_{a\to\gamma}\propto \left(B_0^2 V Q\right)\left(g_{\gamma}^2 \frac{\rho_{\rm a}}{m_{\rm a}}\right).$$

• Typical powers to be measured below 10⁻²³ W

Sensitivity

• When the frequency of the axion induced photon matches the frequency of the **cavity eigenmode**, the conversion power is **resonantly enhanced** via cavity $Q_c (Q_c << Q_a) = Q_c / (1+\beta)$

$$P_{\rm axion} = 1.1 \times 10^{-23} \,\mathrm{W} \left(\frac{g_{\gamma}}{1.92}\right)^2 \left(\frac{\rho_a}{0.45 \,\mathrm{GeV/cm^3}}\right) \left(\frac{\nu_a}{1 \,\mathrm{GHz}}\right) \left(\frac{B_0}{10 \,\mathrm{T}}\right)^2 \left(\frac{V}{1 \,\mathrm{liter}}\right) \left(\frac{C_{mnl}}{0.69}\right) \left(\frac{Q_L}{10^5}\right) \frac{\beta}{(1+\beta)^2} \left(\frac{M_1}{10^5}\right) \frac{\beta}{(1+\beta)^2} \left(\frac{M_2}{10^5}\right) \frac{\beta}{(1+\beta)^2} \left(\frac{M_1}{10^5}\right) \frac{\beta}{(1+\beta)^2} \left(\frac{M_1}{10^5}\right) \frac{\beta}{(1+\beta)^2} \left(\frac{M_2}{10^5}\right) \frac{\beta}{(1+\beta)^2} \left(\frac{M_1}{10^5}\right) \frac{\beta}{(1+\beta)^2} \frac{\beta}{(1+\beta)$$

- The power is picked up by an antenna with coupling β and read by an amplifier. Extremely low power levels
 are detected by sensitive amplifiers
- In the absence of a signal, the output of a receiver is noise measured on a bandwidth B_a corresponding to the axion linewidth

$$P_{\text{noise}} = Gk_B(T_{\text{cav}} + T_{\text{ampl}})B_a = Gk_B T_{\text{sys}}B_a$$

The SNR can be calculated with Dicke's radiometer equation for a

Cavity noise + amplifier noise

 T_{ampl} = amplifier noise temperature G – gain ; k_B – Boltzmann constant T_{sys} = total system noise temperature

$$\mathrm{SNR} = rac{P_{\mathrm{axion}}}{k_B T_{\mathrm{sys}}} \sqrt{rac{t_m}{B_a}}$$

• Since all the frequencies within a cavity bandwidth can be scanned simultaneously, we can calculate a **scanning rate** as

measurement time t_m

Major R&D efforts are made to increase $B_0^2 V C$ Q_c and minimizing T_{sys}

$$\frac{df}{dt} = \frac{1}{\mathrm{SNR}^2} \frac{P_{\mathrm{axion}}^2}{k_B^2 T_{\mathrm{sys}}^2} \frac{Q_a}{Q_L}$$

Haloscopes – Galactic axions

 Resonant detection of DM axions in a magnetic field. One measurement explores only sharp cavity linewidth.
 Scanning is necessary.

Figure of merit for scanning (mass or frequency)

 $\frac{\Delta f}{\Delta t} \propto V^2 B^4 C^2 T_{sys}^{-2} Q$

- High Q microwave cavity operating inside a strong magnetic field B
- Large volume V cavity at high rf frequency f
- Low noise T_{sys} radio frequency receiver
- Use cavity modes with large form factor C

Schematic diagram of the RBF apparatus (1987)

- Scanning to high mass high frequency very difficult due to reduced cavity volumes
- Scanning to low mass low frequency implies large cavities and thus very big magnets

! All current limits assumes axion/ALPs saturate the local DM density

Main components of cavity haloscopes

Refrigeration system

Base temperature T

Microwave cavity

Volume V

Resonance frequency f Tuning

Noise temperature T_n

Magnetic source

Magnetic energy B² V

Haloscope detectors - precursors

- Pilot experiments in Brookhaven (RBF) (1988) and University of Florida (UF) (1990)
- Provided basic structure for even today's most sensitive experiments

Haloscope detectors – 1st gen - ADMX

ADMX – Axion Dark Matter eXperiment – phase I

Collaboration started in 1990 to explore new ways forward:

- SC quantum interference device (SQUID) receiver
- Large size copper cavity inside 8.5 T magnet
- Running temperatures around 1.5 K
- System noise temperature at few K
- Cavity tuning with rods

Reached QCD axion model (KSVZ)

Haloscope detectors – precursors - CARRACK

Different ideas already from the beginning: **Rydberg atoms**

atomic beam

oven

beam

source

PLB 263, 523 (1991)

field

ionization

electrode

Rydberg

laser

atom

Haloscope detectors – current situation

• Within the last 10 years ADMX has evolved and a large number of new apparata based on Sikivie's scheme came into play

Current limits – Sikivie's haloscopes

AxionLimits by <u>cajohare</u>.

ADMX – Axion Dark Matter Experiment

Phys. Rev. Lett. 127, 261803 (2021) 66

4.0

N-body

950

Maxwellian

1000

4.2

HAYSTAC – Haloscope at Yale Sensitive To Axion CDM

- Designed to search for dark matter axions with masses above 10 μeV
- First haloscope to use a Josephson Parametric Amplifier
- First haloscope to employ a Squeezed-state receiver (SSR)

Jewell et al. PRD 107, 072007 (2023) 67

IBS-CAPP Institute of Basic Science

• IBS – CAPP was established in Korea with the aim of building a laboratory equipped with top infrastructure for cavity haloscope searches with enhanced sensitivities over a broader range in the microwave region.

- High Temperature Magnets based on ReBCo tape
- High field and large volume Low Temperature magnet
- Powerful **dilution refrigerators** to achieve ultralow temperature
- Design and construction of largeeffective-volume high-frequency high-Q microwave resonator
- Use of very low noise Josephson Parametric Amplifiers working at different frequencies

Cryogenics (<40mK) Dilution Refrigerators

High Q Tunable Cavity Superconducting tapes

High Field & Big bore Magnet 12T LTS Big Bore SC Magnet

Quantum Amplifier SQUID and/or JPA (T_N ~ SQL)

Axion experiments at CAPP

	CAPP- PACE	CAPP- 8TB	CAPP-HF	CAPP- PACE -JPA	CAPP- PACE -JPA-6cell	CAPP- 8TB -JPA-8cell	CAPP- PACE -JPA-SC	CAPP- MAX	CAPP- AQN-SC	CAPP- HeT-SC	CAPP- 12T-HF- 3cell
Year	2018	2019	2019	2020	2021	2021	2021	2021	2023	2023	2023
Magnet [T]	8	8	9	8	8	8	8	12	8	8	12
m _a [GHz]	~2.5	~1.6	~4.0	~2.3	~5.6	~5.8	~2.3	1.0 ~ 2.0	~2.3	~5.4	~5.3
Δm _a [MHz]	250	200	250	30	80	>100	30	20 ~ 300	-	> 50	~30
Sensitivity	10*KSVZ +KSVZ	4*KSVZ	10*KSVZ	2*KSVZ	3*KSVZ	KSVZ	KSVZ	DFSZ	DFSZ	KSVZ	KSVZ
T _{phy} [K]	< 0.05	< 0.05	~2	~0.05	~0.05	~0.03	~0.04	~30 mK	60 mK	30 mK	30 mK
T _{sys} [K, mK]	~1 K (HEMT)	~1 K (HEMT)	~2 K (HEMT)	~200 mK	<300 mK	<300 mK	<200 mK	<300 mK	~200 mK	~400 mK	~400 mK
	R&D machine: First physics run (coldest axion data)	First result published by CAPP	First multi-cell cavity result	First run with JPA	First run with JPA+6-cell	First run with JPA+8-cell	First run with JPA+SC	CAPP's main axion detector with JPA	Axion Quark Nugget + SC cavity (Q~1.6M)	First run with He tuning + SC cavity (Q~10M)	3-cell with 12T mag + JPA SC cavity (future)
	Published in PRL	Published in PRL	Published in PRL	Published in PRL		Will publish	Will publish	Published in PRL			

QUAX – QUaerere AXion – QUest for AXion

- Experiment designed to look for dark matter axion in the 10 GHz region
- First apparatus to use a superconducting cavity in a strong magnetic field Q0 = 4.5 10⁵ @ 2 T
- Operation of a quantum limited JPA at high frequency
- Operation of a near quantum limited TWPA at high frequency
- Use of hybrid cavity design (copper-sapphire) to get high Q and large volume
- First haloscope employing a cavity with Qc > Qa

Achieved Tsys = 2.1 K @ 10.5 GHz Reached QCD axion models sensitivity

Layout with novel calibration scheme

Others running

• Reach ~ 10 times KSVZ sensitivity over a 100 MHz window Range (4.70750 – 4.79815) GHz 50K flange 4K flange HEMT Still flange Mixing flange -Radiation shield anchored at still Magnet anchored at 4K Cavity anchored at mixing 68 mm

PRD 106, 052002 (2022)

PRL 129, 111802 (2022)

Next steps:

New dilution unit for lower temperature

TASEH

- Magnet upgrade 9 T and larger volume
- Use of a JPA
- New conical tunable cavity (see next)

PRL 128, 241805 (2022) PRD 106, 092007 (2022) PRL 131, 081801 (2023)

Range (4.7789 – 4.8094) GHz

- Strongest
 magnet for
 haloscope 18 T
- JPC amplifier
- Tsys 0.62 K
- Reach KSVZ sensitivity over a 40 MHz window

Others running II

CAST – CAPP

NatComm 13, 6180(2022)

Use of the LHC – CAST magnet as an haloscope

4 identical stainless steel tunable cavities

Increase the sensitivity via *coherent* combination of the power outputs of 4 frequency-matched cavities *after* individual signal amplification.

- No phase-matching: $SNR_N = \sqrt{N} \cdot SNR_{single}$
- With phase-matching: $SNR_N = N \cdot SNR_{single}$
- Frequency range: ~4.8 5.4 GHz (660 MHz)
- Axion mass range: ~19.7 22.4 μeV

CAST – RADES

JHEP10(2021)075

Use of the LHC – CAST magnet as an haloscope

A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry.

Q_L ~ 11000 @ Frequency 8.384 GHz (34.67 eV)

Others running III

The Grenoble Axion Haloscope project (**GrAHal**) aims at developing a haloscope platform in Grenoble (France), able to run detectors of different sizes and designs for the search of galactic axions and ALPs at the best sensitivity in the 0.3 – 30 GHz frequency range

Pilot experiment with a 14 T magnet And 6.4 GHz cavity

The **ORGAN** experiment (situated in Perth, Australia) is a microwave cavity axion haloscope that aims to search the mass range of **DD-DDDDEV using a multi-cavity design**.

Pathfinder meas @ 26.5 GHz

@ 15.3 – 16.2 GHz

Current limits – Sikivie's haloscopes

AxionLimits by <u>cajohare</u>.

Cavity Haloscopes: what next?

- Haloscopes seems to be CURRENTLY the most promising detectors to search for QCD axion dark matter – bandwidth limited – scanning required
- BEWARE: limits always assume axion as the dominant (100%) DM component
- How fast can we scan with a resonant detector?

$$\frac{df}{dt} = \frac{1}{SNR^2} \frac{g_{a\gamma\gamma}^4 \rho_a^2}{m_a^2} \frac{B_0^4}{k_B^2 T_{sys}^2} \frac{\beta^2 C_{mnl}^2 V^2}{(1+\beta)^2} \frac{Q_c Q_a^2}{(Q_c + Q_a)}$$

- SNR target signal to noise ratio
- Dark matter axion parameters independent of detector

Magnetic field B₀ and system noise temperature T_{sys} (related to apparatus environment)

Resonant cavity volume V, mode form factor C_{mnl} , coupling β and Q factor

Optimization of values of technical parameters will be strongly dependent on the frequency range where the detector is operated

The road to the future: detectors

- Frequency scan inversely proportional to square of detection noise level
- Linear amplifiers limited to the Standard Quantum Limit (SQL)

$$k_{\rm B}T_{\rm N} = h\nu \left(\frac{1}{{\rm e}^{h\nu/k_{\rm B}T}-1} + \frac{1}{2}\right) + k_{\rm B}T_{\rm A}.$$

Total System Noise Level = cavity temperature + detector noise temperature

• Irreducible noise $k_{\rm B}T_{\rm SQL} = h\nu$, dominant noise above 2 GHz @ 100 mK

Low frequency

```
Microstrip SQUID amplifier (ADMX) almost reached SQL
```


Nucl. Instrum. Methods Phys. Res. A 656, 39 (2011).

Performances drops for frequencies above a few GHz

https://doi.org/10.1016/j.nima.2011.07.019

The road to the future: detectors (high frequency)

For frequencies above a few GHz, it is much difficult to reach the limit of a linear amplifier

Other options :

Squeezing \rightarrow Increase the measurement bandwidth

Single photon counter \rightarrow Lots of R&D on the way

Single photon counting

Why do we need Single Microwave Photon Detectors (SMPD) in haloscope search?

Using quantum-limited **linear amplifiers** (Josephson parametric amplifiers) the **noise set by quantum mechanics** exceeds the **signal** in the high frequency range, whereas **photon counting** has no intrinsic limitations

Detection of individual microwave photons is a challenging task because of their low energy e.g. hv = 2.1 × 10⁻⁵ eV for v = 5 GHz

Single photon counting

Requirements for axion dark matter search:

- detection of *itinerant photons* due to involved intense **B** fields
- lowest dark count rate Γ < 100 Hz
- \geq 40–50% efficiency
- large "dynamic" bandwidth ~ cavity tunability

detection of *itinerant photons* applicable to axion searches (multi-Tesla fields)

Single microwave photon counter (SMPD)

Most advanced schemes for the detection of **itinerant photons**

Details in the tutorial this afternoon

 "artificial atoms" introduced in circuit QED, their transition frequencies lie in the ~GHz range

E. Albertinale *et al*, Nature **600**, 434–438 (2021) R. Lescanne *et al*, Phys. Rev. X 10, 021038 (2020)

single current-biased Josephson junction (JJ)

SMPD Haloscopes

Pilot experiment conducted @ Quantronics lab in Saclay (Paris) SMPD @ 7 GHz, 2 T Magnetic field Hybrid cavity with small tuning Manuscript in preparation

A copy of the Saclay device will be installed in Padova for an haloscope with:

- Larger tuning (200 MHz)
- Higher Magnetic field (9 T)

building a SMPD-HALOSCOPE IN PADOVA

Dark photon haloscopes – quantum sensing

A transmon qubit coupled to a microwave cavity has been used to search for dark photons - A. Dixit et al. Phys. Rev. Lett. **126**, 141302 (2021)

Storage Cavity 6.011 GHz Readout Cavity 8.052 GHz Qubit 4.749 GHz

- A superconducting qubit bridges the storage and readout cavities.
- The storage is used to hold the dark matter generated photon
- The readout is used to measure the state of the qubit.
- Dedicated dark matter search protocol to look for qubit state changes induced by the presence of a photon in the cavity

Sensitivity improved by factor 37 over SQL 1300 x faster scanning rate

No tuning No magnetic field Axion searches needs more development

The road to the future: microwave cavities

Cavities developments – larger Q

QUAX double shell dielectric cavity

• **dielectric materials** properly placed inside traditional cylindrical resonant cavities, operated in TM modes of higher order

PHYS. REV. APPLIED 17, 054013 (2022)

- Exploit TM030 mode
- High Q-factor due to field confinement by dielectric shells
- Q0 = 9.3 million in a 8 T magnetic field
- Small cavity tuning (few MHz) with sapphire rods

Cavity	$ u_{cav}$	V	C _{nml}	$V_{eff} = C \cdot V$	Qo
QUAX 2020	10.4 GHz	80 cm ³	0.69	55.6 cm ³	76000
QUAX 2022	10.35 GHz	1056 cm ³	0.033	34.7 cm ³	9.1·10 ⁶

Cavities developments – larger Q

CAPP High Temperature Superconductor cavities

- A polygon-shaped cavity design with biaxially textured ReBCO superconducting tapes covering the entire inner wall.
- Using a 12-sided polygon cavity, substantially improved *Q* factors
- No considerable degradation in the presence of magnetic fields up to 8 T

3 4 5 6 7

Magnetic Field (T)

Third Gen. (2.2 GHz & 5.4 GHz)

1	Generation	Material	Substrate	Volume [liters]	Frequency [GHz]	Q-factor
	1 st Con	VRCO	NIIM	0.3	6.9 150,000 @ 8 330,000 @ 8	150,000 @ 8 T
1	1º Gen	TBCO		0.5		330,000 @ 8 T
	2 nd Gen	GdBCO	Hastelloy	1.5	2.3	500,000 @ 8 T
		EuBCO + APC	Hastelloy	0.2	5.4	13,000,000 @ 8 T
3 rd Gen	EuBCO + APC	Hastelloy	1.5	2.3	4,500,000 @ 7 T	
		EuBCO + APC	Hastelloy	36	~ 1	?

0 1 2

From Woohyun Chung talk @ Patras 2023

HTS cavity can reach 10 times larger than axion quality factor (~ 10^6)

Cavities developments - new geometries

Find ways to increase volume at high frequency while keeping tuning

For right cylindrical cavity, main mode volume

V~1/d^2~1/f^2

Multiple cell cavity at CAPP

- Resonant frequency increases with the cell multiplicity.
- Same frequency tuning mechanism as multiple cavity system can be employed.
- A single RF antenna extracts the signal out of the cavity.

Frequency up to 8 GHz

Cavities developments – new geometries

Cavities developments – tuning

The road to the future: magnets

- For haloscope a dedicated magnet R&D program for higher strength (up to 45+ Tesla) and optimized magnet designs is needed to maximize B^2 V
- Up to now standard superconducting magnets provided field up to about 12-14 T
- Hybrid magnets are foreseen to be used in next generation haloscopes

In the US the National High Magnetic Field Laboratory (MagLab) has been developing higher field REBCO (Rare Earth barium copper oxide) inserts with current designs reaching a maximum field of 45 T

From Snowmass 2021 Axion Dark Matter White Paper

In **Grenoble** a combination of resistive polyhelix and Bitter coils inserted within a large bore superconducting one, a maximum field of at least **43 T** will be produced in a 34 mm diameter aperture with **24** MW of electrical power

Several lower field option will also be available

GraHal Project

arXiv:2110.14406

Dark matter haloscopes – what's going on

CULTASK

- Several other activities are starting or being proposed in the very recent time
- It is a field which is expanding very rapidly

Update: Dark Matter Haloscopes – Lumped elements

- A new way to look for dark matter axion of very low mass : m_a << 1 μeV
- Measure axion induced electric current in a strong magnetic field
- Toroidal magnet configuration

$$\mathbf{J}_{\mathrm{eff}} = g_{a\gamma\gamma}\sqrt{2
ho_{\mathrm{DM}}}\cos(m_a t)\mathbf{B_0}$$

• Broadband and resonant detection of induced ac magnetic field

ABRACADABRA (PRL 127, 081801 (2021)) 12 cm x 12 cm 1 T toroid SQUID detection m_a range 0.41–8.27 neV (50 kHz – 2 MHz)

See also DM-RADIO

SHAFT Nature Physics 17 (2021) 79 1.5 T toroid with FeNi alloy core SQUID detection @ s = 150 aT/VHzm_a range 0.012 -12 neV (3 kHz - 2.9 MHz)

Other techniques for DM detection: dish antenna

Axion-Induced Electromagnetic Radiation from Reflecting/Refractive Surface in Magnetic Field

- Very hard to reach high masses (tens of μeV) with resonant cavities
- New techniques exploits alps induced effects in a magnetized boundary

 A dielectric/conductive interface immersed in a static homogeneous magnetic field will radiate EM-wave at the frequency corresponding to the mass of the ALP dark matter surrounding it

Wide band system

"Dish Antenna" Horns, Jaeckel, Lindner, Lobanov, Redondo & Ringwald, 2012

Emtted power

 $P \propto AB^2 f^{-2}$

Large area A, Strong Fields B

Other techniques: proposals

Conductive mirror

BRASS experiment (Hamburg)

- Large surface mirror; 8 m radius
- Halbach array of permanent magnets
- Rejection of background thanks to spherical shape

- 80 dielectric discs with 60 cm diameter (1 m²) each
- 10 T magnetic field
- Large epsilon material to increase boost factor
- Tuning mechanism (interference is not broadband)

More details in the tutorial this afternoon

Stacked dielectric mirrors

MADMAX experiment (Germany)

- Stacked structure of dielectric plates
- Interference between each emission boost sensitivity

Large volume dish antenna

Broadband Reflector Experiment for Axion Detection (BREAD) - PRL **128**, 131801 (2022)

Find solution for large solenoids

"Coaxial Dish": Optical Concentrator for Solenoid Magnets

focus	Virtual
-	focus focus
1.6	8 /
1.4	
1.2	
1	\mathbf{N}
0.8	Radiating
0.0	conducting
Parabolic	cylinder
^{0.4} surface of	
0.2 rotation	
0 0.5	1 1.5

 Rays emitted from cylindrical inner surface of solenoid are focused to a point after two reflections.

Proof of Concept Experiments: GigaBREAD and InfraBREAD

With state of the art sensors QCD axion sensitivity

The road to the future: high frequency (>20 GHz)

Plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals.

Plasma haloscope: project ALPHA

- Meta material composed by a dense array of parallel wires electrically connected to top and bottom walls.
- Large conversion volume in a magnetic field even for high frequency
- Recent experimental work on seems to confirm feasibility

Phys. Rev. D 107, 055013 (2023)

Resonance w/ plasma frequency

ALPHA PHASE I

- 2 years run
- (5÷40) GHz
- HEMT amplifiers
- Single scan (see [8])

ALPHA PHASE II

- 2 years run
- (5÷45) GHz
- Quantum limited
- Single scan (see [8])

 $(Q \sim 10^4, B \sim 10 \text{ T}, V \approx 0.3 \text{ m}^3)$ 95

Photon coupling – what next

Electron Paramagnetic Resonance: the QUAX proposal

- A new proposal tries to exploit the axion electron coupling g_{aee}
- Due to the motion of the solar system in the galaxy, the axion DM cloud acts as an
 effective magnetic field on electron spin g_{aee}
- The ferromagnetic transition in a magnetized sample can be excited and thus emits microwave photons

Large volume V material; high spin density n_s; long coherence time t_{min}

First prototype of QUAX - 2018

2nd prototype of QUAX

- Increase signal
 10 YIG sphere 2.1 mm diameter
- Reduce noise
 - Quantum limited amplifier (JPC) Dilution refrigerator (100 mK)
- Scan axion mass range Magnetic field tuning

QUAX - Multi sphere system

A new cavity with resonance frequency of 10.7 GHz was realize to match the JPC amplifier working frequency

YIG spheres were produced with diameter ~ 2.1 mm, maximum value to avoid non linear effects with rf coupling

- **Ten good spheres** were selected out of about 20
- Best linewidth
- Same Larmor frequency for a given external static field

Magnetizing field for a given frequency vs sphere diameter

All the sphere must couple coherently to the cavity resonance

Axion electron coupling

Probing a different coupling gives prospects for model discrimination in the event of discovery

NMR Casper

- DM-induced spin precession \rightarrow it can be detected with very sensitive . **NMR** techniques
- Directly sensitive to the gluon term (also to fermionic couplings) .
- Maybe important at very low m_a •

 $B_{
m ext}$

M

Dark matter induced atomic transitions

- DM can induce atomic excitations equal to m_a.
- Sensitive to axion-electron and axion-nucleon coupling
- Zeeman effect \rightarrow create atomic transitions tunable to m_a
- Detection of excitation via pump laser
- AXIOMA \rightarrow recent project aiming at an implementation

Relevant sensitivity for $m_a \sim 10^{-4} \text{ eV}$ seems possible for kg-sized samples

SCIENTIFIC REPORTS

OPEN Axion dark matter detection by laser induced fluorescence in rareearth doped materials

Received: 1 September 2017 Accepted: 25 October 2017 Published online: 09 November 2017 Caterina Braggio¹, Giovanni Carugno¹, Federico Chiossi¹, Alberto Di Lieto², Marco Guarise¹, Pasquale Maddaloni^{3,4}, Antonello Ortolan⁵, Giuseppe Ruoso⁵, Luigi Santamaria⁶, Jordanka Tasseva⁴ & Mauro Tonelli²

Other ideas – Optical devices

arXiv:2306.02168 Galactic Axion Laser Interferometer Leveraging Electro-Optics: GALILEO

electro-optical material's refractive index modified by the presence of a coherently oscillating dark matter background

WISP Searches on a Fiber Interferometer under a Strong Magnetic Field: WISPFI

arXiv:2305.12969

Summarizing the axion

- The research on axion is showing an **increasing interest in the physics community**
- Different detection schemes have been developed to probe different mass ranges – different couplings (useful to obtain axion DM fractional density)
- The haloscope experiments have entered a very exciting phase, reaching the theoretically interesting territory to test the favoured axion models (QCD axion)
- We are still in a pioneering era with several small scale experiments running and being proposed

Thanks to my everyday Collaborators

G.Ruoso C.Braggio A.Ortolan R.Di Vora

https://cajohare.github.io/AxionLimits/

Thank you

Axions for amateurs

David J. E. Marsh^a

^a Theoretical Particle Physics and Cosmology, King's College London, Strand, London, WC2R 2LS, UK

ARTICLE HISTORY

Compiled October 30, 2023

ABSTRACT

Axions are an increasingly popular topic in theoretical physics, and are sparking a global experimental effort. In the following I review the motivations for the existence of axions, the theories underlying them, and the methods to search for them. The target audience is an interested amateur, physics undergraduate, or scientist in another field, and so I use no complicated mathematics or advanced theoretical topics, and instead use lots of analogies.

KEYWORDS

axions, dark matter, haloscope, superradiance, axion electrodynamics, strong cp problem

1. Invitation: a century of progress and problems

We live at an extraordinary time in scientific history: never before have we known so much about the Universe, yet been so certain about our ignorance of it.

PVLAS extension: VMB@CERN

- Sensitivity is limited by extra noise originating in the optical elements (well above shot noise)
- Cavity amplification not effective for F > 10 000 , SNR does not improve

We must increase the signal strength

VMBCERN tries to overcome the limit of PVLAS by employing higher field magnets, namely a prototype LHC magnet, and a new detection scheme

Competing experiments:

- **BMV** a french project based on pulsed magnets. New type of magnet without cooling (10 T, 0.8 m). arXiv:2110.03398
- OVAL a japanese effort as well on pulsed magnet. See S. Kamioka PhD thesis @ https://tabletop.icepp.s.utokyo.ac.jp/wp-content/uploads/2021/02/Dron-kamioka.pdf
VMBC@CERN detection scheme

Two co-rotating half wave plates inside a Fabry-Perot

- Polarization rotation inside the magnetic field but fixed on mirrors to avoid mirror birefringence signal
- Maximum finesse ≈ 1000 5000 (depending on the losses of the wave-plates)
- A detailed study of systematics performed: identified a serious one due to mechanical defects → solution:
 slightly modulate also the magnetic field

$$\Psi(t) = \underbrace{\Psi_0 \sin 4\phi(t)}_{\text{Signal @ 4v_w}} + N \underbrace{\frac{\alpha_1(t)}{2}}_{\text{Spurious signals}} \sin 2\phi(t) + N \underbrace{\frac{\alpha_2(t)}{2}}_{\text{Spurious signals}} \sin [2\phi(t) + 2\Delta\phi(t)]$$
Relative rotation phase error Degrades extinction

 $lpha_{1,2}$ are the phase errors from π of the two HWPs and $\phi(t)$ is their rotation angle

Allows the use of (quasi) static superconducting fields with $B_{ext}^2 L \approx 1000 T^2 m$ (LHC dipole)

VMB@CERN : project postponed

- Careful experimental studies of several critical points
- Method issues
 - ✓ Synchronous rotation of the wave-plates for good extinction ratio
 - \checkmark Understand and workaround the systematic effects at $4v_w$ and mitigate all other harmonics
 - ✓ Total wave-plate ellipticity $\alpha_{1,2}$ << 1/N for correct functioning of the F.P.
 - ✓ Lock the laser to the F.P. with the rotating HWPs inside
- Noise issues without F.P.
 - ✓ Shot-noise without the HWPs (beam pointing stabilization)
 - ✓ Shot-noise with the HWPs but non-rotating (beam pointing stabilization)
 - imes Shot-noise with the rotating HWPs (not even with beam pointing stabilization)
 - > Feedback implementation to maintain systematic harmonics at the noise level
- Cavity issues
 - ✓ Cavity locking with non-rotating HWPs and noise determination
 - ✓ Cavity locking with rotating HWPs: (dust issues, intensity noise, extinction)
 - > Noise determination with the F.P. and rotating HWPs
 - > Required optical path difference noise $S_{\text{OPD}} \approx 10^{-18} \text{ m/VHz} @ 4v_w$ with the F.P.
- The presence of a wide band noise with the rotating waveplates has not been understood and it is at present a showstopper
- R&D activities will continue at low pace on the properties of mirror coating
- Side results interesting also for gravitational wave interferometers

Rotating waveplate with temperature stabilization system

ALPS II @ DESY

HIGH POWER LASER SOURCE

Amplified Non Planar Ring Oscillator (NPRO)

- Demonstrated over 60 W of power at 1064 nm
- > 90% of power in fundamental mode

MAGNET STRINGS

- 24 HERA dipole magnets
- · October 2020: Magnets installed and aligned
- March 2022: Magnet strings run successfully at full curren
 - 5.7 kA, 5.3 T

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

ALPS II: first science RUN

ALPS II first science run

Simplifying the optical system

Operate without production cavity

Simplifies control system

High Power

Laser

- Feedback directly to laser frequency rather than PC length .
- Light injected to COB increased by a factor of 40x
 - Faster identification of 'light leaks' •

 $\nu_{\rm PC}$

14

From Ciaran O'Hare: https://caiohare.github.io/AxionLimits/

Helioscopes: models discrimination

Other Solar Axion Sources / Post Discovery

"ABC Axions"

In addition to Primakoff, "ABC axions" may be x100 more intense... but model-dependent.

Detection of both ABC and Primakoff axion spectrum would allow distinguishing axion models (*gae*, *gaγ*) Jaeckel et al. arXiv:1811.09278

Hidden/dark photons

SRF Cavities

LSW search for **dark photons** using two state-of-the- art high-quality-factor superconducting radio frequency (SRF) cavities

A. Romanenko et al PRL 130, 261801 (2023)

- Operation in a 1.5 K environment
- HEMT readout ($T_n \sim 4 \text{ K} @ 1.3 \text{ GHz}$)
- Very good long term stability of cavities

Parameter	Emitter	Receiver
$\overline{Q_0}$	$4.5 imes 10^{10}$	3.0×10^{10}
$Q_{ m in}$	1.8×10^{9}	$4.5 imes 10^{11}$
Q_t	2.9×10^{11}	1.3×10^{10}
Frequency drift	5.7 Hz	3.0 Hz

Final measurement compatible with thermal noise with P = -152 dBm with input power 30 dBm

Future improvements:

- Use of a dilution refrigerator improve temperature stability
- Quantum limited detector
- Magnetic field for axion search (?)

Milli-charged particles – sub eV range

Particles with {mass, electric charge} = { $m_{\chi}, \epsilon e$ }

$$\varepsilon = Q_{\chi}/e$$

Mark Goodsell^{a,c}, Joerg Jaeckel^b, Javier Redondo^{c,d} and Andreas Ringwald^c Published 6 November 2009 • Journal of High Energy Physics, Volume 2009, JHEP11(2009)

Laboratory experiments can put model independent limits also in the sub eV region

From LSW experiments (ALPSI) Physics Letters B 689 (2010) 149–155

Thank you

The axion

- The axion is a light pseudoscalar boson, its properties can be derived using current algebra techniques
- The axion is the light cousin of the π^0 :

$$m_a f_a \gg m_p f_p$$

 m_p = 135 MeV – pion mass f_p = 93 MeV – pion decay constant

• The most recent calculation using lattice QCD

$$m_a = 5.70(6)(4) \,\mu \text{eV} \,\left(rac{10^{12} \text{GeV}}{f_a}
ight)$$

G.Grilli di Cortona et al J. High Energy Phys. 01 (2016) 034

- f_a is the axion decay constant, related to the scale of spontaneous breaking of the PQ simmetry
- the strong CP problem is solved regardless of the value of f_a
- f_{a} is the quantity that determines all the low energy phenomena of the axion
- Axion couplings with ordinary matter depends on the model implementing the PQ simmetry
- Extensions of the standard model including the PQ symmetry need **extra degrees of freedom**:
 - 1. new scalars or fermions
 - 2. new quarks

Axion Model Benchmarks

PQWW (Peccei, Quinn, Weinberg, Wilczeck)

- Introduces in the SM 2 extra Higgs doublets f_a is at the electroweak scale (250 GeV)
 - $m_a \approx 100 \text{ keV}$

R.Peccei, H.R.Quinn, PRL38(1977)1440 R.Peccei, H.R.Quinn, PRD16(1977)1791 S.Weinberg, PRL40(1978)223 F.Wilczek, PRL40(1978)279

RULED OUT BY ACCELERATOR EXPERIMENTS (axion coupling too large)

"Invisible" axion models

Dine-Fischler-Srednicki-Zhitnitskii (DFSZ)	Kim-Shifman-Vainstein-Zakharov(KSVZ)
M.Dine, W.Fischler, M.Srednicki, Phys.Lett. 104B (1981) 199	J.E.Kim,PRL43(1979)103
A.R.Zhitnitsky,Sov.J.Nucl.Phys.31(1980)260	M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, NPB166 (1980) 493
2 extra Higgs doublets	• New extra heavy quark with mass $m_0 = f_a$
New complex PQ scalar	New complex PQ scalar
 Tree level coupling with leptons of SM 	• No direct coupling (at tree level) to lepton of SM.

- Very light ($m_a < eV$) and very weak couplings for $f_a >>$ electroweak scale
- The strength of the axion interaction depends on the assignment of the $U_{PO}(1)$ charge to quarks and leptons (model class dependent)
- Models list not exhaustive, axions in String theory, SUperGRAvity, SUSY or GUT

Axion interactions

All couplings are extremely weak (Invisible Axion models)!

Axion probes (observable effects)

- The "invisible" axion models DFSZ and KSVZ are in good shape but axions are still evading current experimental searches in many areas
 - Cosmology: axion as DM candidate
 - Astrophysics: axions as additional energy dissipation channels
 - Sun production
- Osservable effects in laboratory experiments
 - Axion production /detection
 - "Axion mediated" fifth force (Monopole-dipole, dipole-dipole)
 - Change of fundamental constants (Axion Moduli)
 - Quasi-particles (magnons, polaritons, plasmons, axions in topological insulators, ...,

Axion & Cosmology

D.J.E. Marsh / Physics Reports 643 (2016) 1-79

"Axion" in cosmology can take on a variety of meanings:

- QCD axion: the Peccei–Quinn solution to the strong-CP problem $m_a \alpha 1/f_a$.
- ALP: any pseudoscalar Goldstone bosons with a two parameter model (m_a,f_a)
- ST&SUGRA: either matter fields or pseudoscalar fields associated to the geometry of compact spatial dimensions
- 50 order of magnitude uncertainty!
- QCD axions can be the DM constituent with mass range predicted by high temperature lattice QCD

QCD Axion DM mass range can be predicted: $20 \div 200 \ \mu eV$

Axions in the outer space

- A light axion (m_a < eV) has lifetime that can be longer than the age of the Universe. This kind of axion is indeed important for cosmology.
- Is it a main component of Dark Matter?

Composition of the Universe after Planck

precise measurement of CMB

Typical rotational curve of galaxys

Axions are weakly interacting, stable on cosmological times, non relativistic

measured

distance from center (light y

Standard Halo Model for ρ_{DM} and $f(v_a)$

Standard Halo Model: Isothermal, isotropic Maxwell-Boltzmann Distribution of DM assuming ρ_{DM} = 0.3 – 0.45 Gev/cm³

$$f(v) = 4\pi \left(\frac{\beta}{\pi}\right)^{3/2} v^2 \exp(-\beta v^2)$$

M. S. Turner, Periodic signatures for the detection of cosmic axions, Phys. Rev. D 42, 3572 (1990).

Observed axion velocity $\mathbf{v}_a = \mathbf{v} - \mathbf{v}_E$, where the Earth velocity $\mathbf{v}_E = \mathbf{v}_{sun} + \mathbf{v}_{orb}$

$$egin{aligned} f(v_a) &= 2\left(rac{eta}{\pi}
ight)^{1/2}rac{v_a}{v_E}\exp(-eta v_a^2-eta v_E^2)\sinh(2eta v_E v_a)\ &\simeq 2\left(rac{eta}{\pi}
ight)^{1/2}rac{v_a}{v_E}\ \ \exp(-eta(v_a-v_E)^2) \end{aligned}$$

Axions in the galactic halo

- In order to explain galaxy rotation curves, an halo of dark matter is hypothesized
- Accepted value for local dark matter **density**

 $\rho_{DM} \approx 0.3 - 0.45 \text{ GeV/cm}^3$

- Cold dark matter component is thermalized and has a Maxwellian velocity distribution, with a dispersion σ_v ≈ 270 km/s
- There might be a nonthermalized component with sharper velocity distribution

- Axion can be a dominant component of the galactic DM halo
- Its occupation number is large

 $n_a \approx 3 \times 10^{14} \left(\frac{10^{-6} eV}{m_a} \right)$ axions/cm³

 It can be treated as a classical oscillating field with frequency given by the axion mass

$$\frac{\omega_a}{2\pi} = 2.4 \left(\frac{10^{-6} eV}{m_a}\right) \qquad \text{GHz}$$

• It has coherence length and time $\lambda = 1400 \left(\frac{10^{-6} eV}{m_a}\right) m$ $t = 5 \left(\frac{10^{-6} eV}{m_a}\right) ms$