Knut Dundas Morå fysikk@dundasmora.no, he/him

Statistics and Inference

for rare event searches

What is a statistical model?

Does it describe your data?

What kinds of conclusions can we draw?

GOALS! This course should teach you:

- To construct a <u>statistical</u> model for your experiment
- To consider how to test whether your data is compatible with your statistical model
- To use your statistical model make statements about physics
- And to interpret others' statements

Structure Three lectures and exercise sessions

- TUE 1645-1830
 - Introduction
 - Hypothesis Testing
 - Goodness of Fit
- WED 1115-1300
 - Example analyses
 - Look-Elsewhere-effect
 - Confidence Interval construction
- THUR 1645-1830
 - Bayesian credible intervals
 - •

Resources

How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics.

Mike Williams

Imperial College London, London SW7 2AZ, UK

ABSTRACT: Multivariate analyses play an important role in high energy physics. Such analyses often involve performing an unbinned maximum likelihood fit of a probability density function (p.d.f.) to the data. This paper explores a variety of unbinned methods for determining the good-

https://arxiv.org/pdf/ 1006.3019

- useful to think about the goodness-of-fit challenge

Notation

I'll follow Frederick James' Statistical Methods

- A random variable, or several are X, X_i, X
- The probability of an event A is P(A)
- Parameters of a model are θ
- Conditional probabilities are $P(A \mid B)$
- The likelihood is $\mathcal{L}(\boldsymbol{\theta} | \boldsymbol{X}) = P(\boldsymbol{X} | \boldsymbol{\theta})$
- Expectation value(s) for counting experiments are μ , μ
- Expectation values, variance E(X), V(X)
- best-fit parameters or point estimates are $\hat{\theta}$

Observed data is random variables some

or is it are

- Our measured data is a result of processes both truly and practically random (e.g. quantum processes, me reading a ruler crooked)
- In some cases, the data itself is close to what we wish to measure, and we hardly think of ourselves doing statistics
- However, in particular when looking for small or subtle effects, the random noise may be significant, and the relationship between physics parameters and the measured quantity less straightforward
 - You'll need to make a statistical model for how your data came to be,
 - And methods to make sound conclusions

Test statistics are functions of your observations So

- Any function of your observed data will be a random variable
- By using the right function, we can gather all the information gathered into one number
 - E.g. estimators (\hat{s}) which directly give a measurement of some parameter
- The tricky part will most often be to
 - choose the function to give the most information from the data, and
 - Understand the distribution of the test statistic

$$\hat{\mu} = \frac{1}{N} \sum_{i} x_{i}$$

$$\hat{\sigma} = \sqrt{\frac{\sum_{i} (x_i - \hat{\mu})^2}{1 - N}}$$

Probability distributions/densities Some

- if X is a continuous variable, we may define a probability density function (PDF) to describe the distribution
- The cumulative density function (CDF), F(X), is often also useful
 - and its inverse!

$$f(X) = \lim_{\epsilon \to 0} P(x_0 < X < x_0 + \epsilon)/\epsilon$$

$$F(X) = \int_{-\infty}^{X} f(X') dX'$$

$$P(X_0 < X < X_1) = F(X_1) - F(X_0)$$

Expectation values, variance

Useful Summaries of location:
$$E(X) = \int_{-\infty}^{\infty} X \cdot f(X) dX$$

and spread:
$$V(X) = \int_{-\infty}^{\infty} (X - E(X))^2 \cdot f(X) dX$$

Linear:
$$E(a \cdot y(X) + b \cdot z(X)) = a \cdot E(y(X)) + b \cdot E(z(X))$$

If x_i are identically distributed independent random variables:

the mean estimator
$$\hat{\mu}=\frac{1}{N}\sum_i x_i$$
, has the correct expectation $E(\hat{\mu})=E(X)$

as doers the variance estimator
$$\hat{\sigma}^2 = \frac{\sum_i (x_i - \hat{\mu})^2}{1 - N}, E(\hat{\sigma}^2) = V(X)$$

Any number of distributions!

- If we are certain about the outcome, is it really an experiment?
- Depending on what you measure, your distributions may be as simple or as complicated as can be imagined
- However, for many problems, physical considerations or your experience may lead you to have a look at some of the most common ones used—they are useful building blocks!
- Some (student T, F-test, χ^2) are also useful because they describe the behaviour of some useful test statistics

The Poisson distribution

- If you count events that happen in a certain period, you'll end up with a Poisson distribution
- Expectation value and variance are both μ

$$P(N) = \frac{\mu^N e^{-\mu}}{N!}$$

Bi/multi-nomial distributions

- If we count how many times each of a finite set of outcomes happens, we get the multinomial distribution
 - M total tries, n_i events in each category, with probability p_i
 - And if the number of possible outcomes k = 2, we get the Binomial distribution
- Examples: Histogram bin counts, classification

- Turns up in e.g.
 - Spatial distribution of dark matter events?
- But more importantly, it is often very often useful to convert another distribution into a uniform distribution (*Y* here) between 0 and 1

$$Y(X) = \int_{-\infty}^{X} f(X') dX'$$

$$f(X) = \begin{cases} \frac{1}{b-a} & \text{if } a < X < b \\ 0 & \text{else} \end{cases}$$

The Gaussian distribution

The industry default. AKA bell curve, normal distribution

- The Gaussian distribution is the limit of sums of random numbers with finite mean and variance—the Central Limit Theorem
 - E.g. diffusion!
- For this reason, it is often the "default" assumption for a continuous distribution
- However, by using this (or many other analytical distributions) you may be assuming to know the behaviour for even very extreme outliers

$$f(X) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-(x-\mu)^2/(2\sigma^2)}$$

- The sum of the square of ν standard normal distributed numbers is distributed according to the χ^2 -distribution
- We'll see later that this means that you'll encounter this distribution frequently when computing confidence intervals

$$\sum_{i=1}^{N} \frac{(X_i - \mu_i)^2}{\sigma_i^2} \sim \chi_{\nu=N}^2$$

$$f(X \mid \nu) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} X^{\nu/2 - 1} e^{-x/2}$$

Histograms as distribution estimates some

- If you wish to characterise the distribution of, for example, the distribution of energy deposited by electrons and photons in a calorimeter, or the total path length of all tracks, you may never find an analytical estimate
- Higher dimensionality can challenge this approach
- and you'll need to check you have enough samples or include the uncertainty

<u>Fitting using finite Monte Carlo</u> samples (Barlow and Beeston)

Figure 1: Electromagnetic shhower in calorimeter induced by photon

Technical aside 1: Shape and Rate? Source

- - When using histograms to estimate the distribution, nuisance parameters are wellnamed
 - To have a continuous nuisance parameter, "template morphing"-- linear interpolation between some points in parameter space is often used
 - Since this is computationally tricky, there will often be a divide between "rate parameters"-- those that only affect expectation values, and therefore are "easy" and "shape parameters"—those that require modifying the PDF of one or more signal/background model

- Another method to estimate densities, or too make a distribution estimate smoother is to use a kernel density estimate— adding a kernel, a PDF centred on each event in the sample
 - To choose the width of this kernel, you may have to split your dataset in a fit and validation dataset
- If your distribution has sharp edges, or areas with very dissimilar densities, you may wish to use an adaptive KDE

scikit-learn provides extensive KDE functionality

Frequentist interpretation of probability so

- The frequentist interpretation of probability is the relative frequency of some outcome in the limit of infinite number of repetitions
 - This limit needs only be in principle—valid frequentist inference can occur for a single experiment as long as that experiment is repeatable
- Views the data as random outcomes of fixed processes
 - In some sense— a very particle physics way of looking at the world
- Dominant in particle physics

Hypothesis testing

- Frequentist hypothesis testing: make a decision between the two alternatives
- You get to choose:
 - What test statistic you use to separate the two hypotheses!
 - And, the decision boundary, either explicitly
 - Or implicitly by demanding a certain probability to reject H_0

	P(accept H0)	P(accept H1)	
H0 is true	1-a	a (test size)	
H1 is true	β	1-β (power)	

Test Statistics

- From the collected data, we wish to find a function of the data that expresses a direction or ordering of the data in a more H0 or H1 direction
- Typical examples; mean, median etc.
- For the example to the right, y would be a poor test statistic if we wish to distinguish the two, x would be better, and a combination would provide very good separation

What is a p-value?

- Since we want to use the best test statistic for each case, we could have many ways of measuring agreement with a hypothesis
- However, we can transform all our rulers into the same space by using p-values, which works with the integral of the distribution of T
- all p-values are between 0 and 1, and are defined by deciding on:
 - a test statistic
 - and a decision of what direction that test statistic expresses more tension with H_0
- Under H_0 , p is uniformly distributed between 0 and 1

$$p(T_{\text{obs}}) = \int_{T_{\text{obs}}}^{\infty} f(T|H_0) dT$$

p-values are the probability to observe a dataset equally or more extreme* than the one observed, given a certain (null) hypothesis

^{*}ordering by a test statistic**

^{**}usually chosen to separate the null and alternative hypothesis as well as possible

"Counting Sigmas"

This about the sold is been a similar an induction of 120.0 ± 0.7 (5.00) ± 0.7 (5.00) ± 0.7 (5.00)

This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson. $\sigma = \Phi^{-1}(1-p)$

- As a yardstick for p-values, you can often see "sigmas", or σ (or Z-score) used.
- "Five sigma", or 3×10^{-7} is the "standard" for discovery
 - Though you should consider what is the appropriate threshold in your field
- Be wary that you often also see the 2-sided version!

Search	Degree of	Impact	LEE	Systematics	Number
	surprise	_			of σ
Higgs search	Medium	Very high	Mass	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B_s oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$sin^2(2\theta), \Delta m^2$	No	4
$B_s \to \mu\mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
$H \operatorname{spin} \neq 0$	Yes	High	No	Medium	5
4^{th} generation q, l, ν	Yes	High	M, mode	No	6
${ m v}_{ u}>{ m c}$	Enormous	Enormous	No	Yes	>8
Dark matter (direct)	Medium	High	Medium	Yes	5
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

Table 1: Summary of some searches for new phenomena, with suggested numerical values for the number of σ that might be appropriate for claiming a discovery.

- A very useful test statistic is likelihoods—the probability of the data *given* a model
 - Likelihoods are central to most of both Bayesian and Frequentist methods
- As an example, the likelihood as a function of expected events for a counting experiment that sees 3 events is:
- We often deal with independent events (e.g. number of events in different histogram bins); we can build up a total likelihood by multiplying (or, using logarithms, adding) terms
- The well-loved χ^2 -statistic is what you get if you combine Gaussian likelihood terms

$$\mathcal{L} = P(\text{data}|H)$$

$$\mathcal{L}(\mu|N=3) = \text{Poisson}(N=3|\mu)$$

$$\mathcal{L}(\vec{\mu}|\vec{N}) = \prod_{i} \text{Poisson}(N_i|\mu_i)$$

$$\log(\mathcal{L}(\vec{\mu}|\vec{x}, \vec{\sigma})) =$$

$$\sum_{i} \log(\text{Gaussian}(x_i|\mu_i, \sigma_i)) =$$

$$\sum_{i} (\frac{(x_i - \mu_i)^2}{\sigma_i^2}) + K_{26}$$

- IFF H_0 and H_1 are completely specified, the likelihood ratio between the two turns out to be the solution to the test statistic problem— it is the *uniformly most powerful test*.
- For example, the plot to the right shows the NP ratio between two Gaussian hypotheses, one with μ , $\sigma = 0.1$ and one 1.2.

$$\lambda = \frac{\mathcal{L}(\text{data}|H_1)}{\mathcal{L}(\text{data}|H_0)}$$

- We seldom have completely specified hypotheses
- Our background and signal models have uncertainties, parameterised by nuisance parameters (theta below)
- Unlike the Neyman-Pearson case, we are not guaranteed that this is the best possible test, but it very often performs well.

$$\lambda(s) = -2 \cdot (\log(\mathcal{L}(s, \hat{\theta})) - \log(\mathcal{L}(\hat{s}, \hat{\theta})))$$

Follow-up question: What parameters may be ignored?

- We are rarely (never) able to include every possible uncertainty in our inference frameworks
 - And it is not likely that every parameter is important
- Need ways to decide which parameters are unimportant enough
- To my knowledge, no standards or consistency in how these questions are treated.
- To the right, two toy investigations in XENON1T— signal shape parameters often have very little impact on confidence intervals

E. Aprile et. al (XENON). Search for Coherent Elastic Scattering of Solar ⁸B Neutrinos in the XENON1T Dark Matter Experiment. Phys. Rev. Lett., 126:091301, 2021. doi: 10.1103/PhysRevLett.126.091301.

E. Aprile et. al (XENON). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett., 121(11):111302, 2018. doi: 10.1103/Phys- RevLett.121.111302

Estimators

- Estimators are test statistics we wish to use to understand some physical parameter.
- The ideal estimator has zero bias $(E(\hat{\theta}) = \theta)$ and as low variance as possible
 - And most importantly, that it is *consistent* that it converges to the true value with increasing observations
- A simple method to construct an estimator is to compute the expected mean or higher moments of the distribution, and invert that expression
- *The maximum likelihood* will, in the limit of a large sample be ideal: it is consistent, and is asymptotically normally distributed with the minimal possible variance

$$\delta \log \mathcal{L}(\hat{\boldsymbol{\theta}})/\delta \theta_j = 0;$$

From the earliest days of statistics, statisticians have begun their analysis by proposing a distribution for their observations, and then, perhaps with somewhat less enthusiasm, have checked whether this distribution is true

- Ralph B. D'Angostino and Michael A. Stephens, Goodness-of-Fit Techniques, 1986

Goodness-of-Fit (GOF)

- The conclusions we draw from our data depends on our statistical model
- Unless we have a strong physical argument for a certain distribution to hold (e.g. Poission for counting events) we should probe the correctness of our model or fit to the data
- Unlike other hypothesis testing, GOF tests must consider every possible other alternative as a competitor to the model we test
- The conclusion to a failed goodness-of-fit test may therefore sometimes just be "worry more"

"I am powerful. And I am only the most lowly gatekeeper. But from room to room stand gatekeepers, each more powerful than the other. I can't endure even one glimpse of the third,"

- The sum of ν standard normal-distributed numbers is $\chi^2_{\nu DOF}$ -distributed
- Often encountered fitting curves
 - If there are errors in both x and y, you may transform it into an effective total error on y
- or histograms with large enough counts that they approach a Gaussian
- If one or more parameters are fit, the effective number of degrees of freedom is reduced accordingly (this assumes that the parameters are independent)

$$\chi^2 = \sum (x_i - E(X_i))^2 / \sigma_i^2$$

$\nu \approx$ number of observations - number of fitted parameters

- Kolmogorov-Smirnov and Anderson-Darling are two tests that rely on comparing the Empirical Distribution Function (the cumulative fraction of events) and the tested distribution
- Useful since no binning is assumed
- The KS test considers the maximal distance between the two, and manages to be *distribution-free* the distribution of the test statistic does not depend on *F*
- Alternatives include the Cramér-von Mises test, which is also distribution-free and Anderson-Darling which is not

$$D_{KS} = \max |EDF(X) - F(X)|$$

$$W^{2} = \int_{-\infty}^{\infty} (EDF(X) - F(X))^{2} f(X) dX$$

https://arxiv.org/abs/hep-ex/020301

- Ideally, you should consider what sorts of mismodelling you are most worried about and choose goodness-of-fit tests to target these with the most *power*
 - Often, a projection on the dimension you care about will be a good start
- Some neat ideas exist to try to tackle high dimensionality by considering an analogue of electrostatic energy between point clouds
- One caution: the likelihood itself may seem tempting, but turns out to be a poor GOF test statistic

8. CONCLUSIONS

- This "g.o.f." method is fatally flawed in the unbinned case. Don't use it. Complain when you see it used.
- With fixed p.d.f.'s, the method suffers from test bias, and is not invariant with respect to change

https://arxiv.org/abs/physics/0310167

Cuts are often GOF tests!

- Many event selections may be considered goodness-offit tests— asking whether they are compatible with coming from a signal
- Others are more standard hypothesis tests, if the background model is specified
- But we often define some cuts first and only model what remains!

DATA QUALITY CUTS

- Events are required to pass a range of quality cuts:
 - The S1 and S2 peak should each have patterns, top/bottom ratios etc. consistent with real events
- An S2 width consistent with the expected diffusion
- An S2 over 500 PE
- Not within < 300 ns of a neutron veto event
- Events must be within ER band
- Fiducial volume cut selects a mass of (4.37 ± 0.14) tonnes with low backgrounds

What are Toy Monte-Carlo methods? Some

- What is the area of a circle?
- Or, often equally importantl — what is the distribution o our estimate for π , or any other test statistic you can imagine?
 - In this case you can figure out the distribution,
- But for many more complicated cases, you may either rely on approximations or simulated results

Searching for rare events is a matter of luck:

Searching for rare events is a matter of luck:

Searching for rare events is a matter of luck:

Questions?

Introduction to statistics

- We model our observations with a statistical model, usually in terms of probability distributions.
- We choose test statistics that distil the information we wish to learn from the data
- and often formulate questions in terms of hypothesis tests— given the data, should we favour one or the other?
- A particularly important hypothesis test is whether your data agrees with the distribution you use!

Summary of first topic

- We model our observations with a statistical model, usually in terms of probability distributions.
- We choose test statistics that distil the information we wish to learn from the data
- and often formulate questions in terms of hypothesis tests— given the data, should we favour one or the other?
- A particularly important hypothesis test is whether your data agrees with the distribution you use!

SOME STATISTICAL MODELS

SEARCH DATA

CALIBRATION

OTHER
MEASUREMENTS/
CONSTRAINTS

$$\mathscr{L}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) = \mathscr{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) \times \mathscr{L}_{\text{cal}}(\overrightarrow{\theta_b}) \times \mathscr{L}_{\text{anc}}(\overrightarrow{\theta_b})$$

COUNTING

$$\mathscr{L}_{\text{sci}}(s, \overrightarrow{\theta}_{s}, \overrightarrow{\theta}_{b}) =$$

Poisson $(N_{\text{sci}} | \mu_b(\vec{\theta}_b) + \mu_s(s, \overrightarrow{\theta}_s, \vec{\theta}_b))$

ON-OFF

LIKELIHOODS

$$\mathscr{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) =$$

Poisson $(N_{\text{sci}} | \mu_b(\vec{\theta}_b) + \mu_s(s, \overrightarrow{\theta}_s, \vec{\theta}_b)) \times$

Poisson($N_{\text{cal}} \mid \alpha \times \mu_b(\vec{\theta}_b)$)

BINNED

LIKELIHOODS

$$\mathcal{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) = \prod_{i=1}^{N_s} \left[\text{Poisson}(N_i | \mu_{b,i}(\overrightarrow{\theta_b}) + \mu_{s,i}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})) \right]$$

UNBINNED

LIKELIHOODS

$$\mathcal{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) = \text{Poisson}(N_{\text{sci}} | \mu_b(\overrightarrow{\theta_b}) + \mu_s(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})) \times \prod_{i=1}^{N_s} \left[\frac{\mu_s}{\mu_s + \mu_b} f_s(\overrightarrow{x_i} | s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) + \frac{\mu_b}{\mu_s + \mu_b} f_b(\overrightarrow{x_i} | \overrightarrow{\theta_b}) \right]$$

 $\mathscr{L}_{\mathrm{cal}}(\vec{\theta}_b)$ typically on the same form, while $\mathscr{L}_{\mathrm{anc}}(\vec{\theta}_b)$ contains ancillary measurements— often Gaussian terms like $\mathrm{Gaussian}(\hat{\theta}_i \,|\, \theta_i, \sigma_{\theta_i})$ but sometimes more complex functions, e.g. with correlations or with a different likelihood shape

Counting Experiments

- "just" counting events— but the estimate of the background rate and acceptance can be as complicated as anything
- If there is no signal/background overlap *or* complete overlap, this may be the optimal sensitivity
- Otherwise, it might still be a worthwhile compromise if you're worried about whether you can model your background correctly

DarkSide-50 532-day https://arxiv.org/pdf/1802.07198

$$\mathcal{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) =$$

$$Poisson(N_{\text{sci}} | \mu_b(\overrightarrow{\theta_b}) + \mu_s(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}))$$

However, shapes often matter

On-Off likelihoods

- WIMP searches rarely get to turn off their signal completely
- Directional dark matter searches and some axion searches, on the other hand can take representative data in a no/low signal and high signal state
- Also common in indirect detection

Let
$$\mathcal{L}_{\text{sci}}(s, \overrightarrow{\theta}_{s}, \overrightarrow{\theta}_{b}) =$$
Poisson $(N_{\text{sci}} | \mu_{b}(\overrightarrow{\theta}_{b}) + \mu_{s}(s, \overrightarrow{\theta}_{s}, \overrightarrow{\theta}_{b})) \times$
Poisson $(N_{\text{cal}} | \alpha \times \mu_{b}(\overrightarrow{\theta}_{b}))$

Binned Likelihood

- With more than ~ 5 events in each bin, you can use computationally efficient methods to compute test statistic distributions
- Eases visualisation and goodness-of-fit
- And simpler to share results
- Minimal sensitivity loss if the bin width is small compared to the detector resolution

PandaX ionisation-only search, https://arxiv.org/abs/2212.10067

$$\mathcal{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) = \prod_{i=1}^{N_s} \left[\text{Poisson}(N_i | \mu_{b,i}(\overrightarrow{\theta_b}) + \mu_{s,i}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})) \right]$$

Unbinned (extended) likelihood

- If the events are too few to fill bins, the unbinned likelihood promises the best performance
- Might still have to rely on binned methods for goodnessof-fit
- if you rely on Monte Carlo methods to generate distributions, that can require a lot of statistics and be harder to validate

XENONnT first WIMP search

$$\mathcal{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) = \text{Poisson}(N_{\text{sci}} | \mu_b(\overrightarrow{\theta_b}) + \mu_s(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})) \times \prod_{i=1}^{N_s} \left[\frac{\mu_s}{\mu_s + \mu_b} f_s(\overrightarrow{x_i} | s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) + \frac{\mu_b}{\mu_s + \mu_b} f_b(\overrightarrow{x_i} | \overrightarrow{\theta_b}) \right]$$

Likelihoods can be composed

$$\mathscr{L}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})$$
 Science run $= \mathscr{L}_{\text{sci}}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b}) \times \mathscr{L}_{\text{cal}}(\overrightarrow{\theta_b}) \times \mathscr{L}_{\text{anc}}(\overrightarrow{\theta_b})$

$$\mathscr{L}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})_{\textbf{tot}} = \mathscr{L}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})_{\textbf{tot}} \times \mathscr{L}(s, \overrightarrow{\theta_s}, \overrightarrow{\theta_b})_{\textbf{tot}} \times \mathscr{L}_{\textbf{shared}}(\boldsymbol{\theta})$$

The likelihood relies on the model

- The validity of the inference relies on the underlying model
- The signal model may be quite forgiving— if an excess is 10-20 events, far tails are less significant
- Experiments typically include uncertainties on background rates, but not always on the distribution used.
- XENON1T added a "signal-like" background shape to its ER background model to lower the chance of overconstraining the model.
- For XENONnT, this was replaced by a more careful selection of nuisance parameter directions, and a stronger focus on pre-defined goodness-of-fit tests chosen for their power to discover mismodelling

N. Priel et al. A model independent safeguard against background mismodeling for statistical inference. 2017(05):013–013, may 2017. doi: 10.1088/1475-7516/2017/05/013.

Experimenter bias is a danger with few events

• The most common experimenter bias mitigation method is "blinding"— not showing the signal-like region of parameter space until the analysis has been frozen

 LUX developed a "salting" procedure where synthetic signals were made by stitching together genuine S1 and S2 signals into full events

in the data

Experimenter bias is a danger with few events

- With few events the effect can be drastic if you chance something in your analysis—the plot shows the 60% change in limit available to you between the best post-unblinding and the worst post-unblinding radial cut.
 - This is a necessary consequence of making your analysis sensitive to few events!
- Further, with only some hundreds of events, and many variables, every event may well be an outlier in some space

Homeopathic poison

— the fewer events
the greater danger

