INFRISOUP 2024

The 3rd INFN School on Underground Physics: Theory & Experiments

SOUP 2024

NOBLE LIQUID DETECTORS, PART 2

Prof. Giuliana Fiorillo Università degli studi di Napoli "Federico II" and INFN - Sezione di Napoli

CONTENTS, PART 2

- Applications to direct dark matter detection and experiments
 - Brief review of direct detection principles
 - Argon DM detectors: ArDM, Darkside-50, DEAP-3600, DarkSide-20k
 - Xenon DM detectors: XMASS, XENON, LZ, PandaX, DARWIN/XLZD
- Applications to neutrino physics and experiments
 - Brief motivation and open questions in neutrino physics
 - DUNE (LAr)
 - EXO-200, nEXO (LXe)
- Summary

Slides courtesy of L. Baudis and R. Calabrese

NL DETECTORS

DARK MATTER

WHAT IS DARK MATTER? A spectrum spanning 80 orders of magnitude

WIMP paradigm: a good place to start looking

The Minimal WIMP Model Basic Assumptions:

- Single particle that does not interact with itself
- Interacts weakly with Standard Model
- $2 \rightarrow 2$ annihilations primarily in s-wave
- Annihilations set thermal abundance today

WIMP WIND ON EARTH

Goodman & Witten (1985): "Detectability of certain dark matter candidates"

$$\frac{dR}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \times \int dv f(v) v \frac{d\sigma_{\chi}}{dE_R}$$

- ρ_{χ} galactic dark matter halo local density
- *v* relative velocity wrt terrestrial detector
- σ_{χ} elastic scattering off target nuclei \rightarrow Particle physics

Astrophysics

WIMP-NUCLEON SCATTERING

• Non-relativistic scattering $v/c \simeq 10^{-3}$

$$E_{0} = \frac{1}{2}m_{\chi}v^{2}; \quad r = \frac{4m_{\chi}m_{N}}{(m_{\chi} + m_{N})^{2}}; \quad E_{R} = E_{0}r\frac{(1 - \cos\theta)}{2}$$
$$\frac{dR}{dE_{R}} = \frac{R_{0}}{E_{0}r}\exp\left(-\frac{E_{R}}{E_{0}r}\right) \times [S(E_{R})F^{2}(q^{2})I]$$

 $F^2(q^2)$ Form factor $S(E_R)$ seasonal modulation I Interaction type

- Contact interaction independent of momentum exchange (nucleus as a particle, with charge and spin)
 - ➡ standard SI/SD description
 - nuclear form factors generally included

INTERACTION CROSS SECTION VS WIMP MASS

EXPERIMENTAL CHALLENGE

- To observe a signal which is:
 - very small: low recoil energies < 100 keV</p>
 - very rare: <1 event/(kg y) at low masses and < 1 event/(t y) at high masses
 - buried in backgrounds with > 10⁶ higher rates:
 - Muon-induced neutrons: NRs
 - Cosmogenic activation of materials/targets: ERs
 - Radioactivity of detector materials: NRs and ERs
 - Target intrinsic isotopes: ERs

10¹ radioactivity (ER) 10⁰ Event rate [(keV t yr)⁻¹] neutrinos (ER) WIMP (NR) ER/NR discr. utrons (NR neutrino fog (NR) 10⁻⁵ 10⁻⁶ 80 90 100 20 30 60 70 0 10 40 50 Recoil Energy [keV]

arXiv:2404.19524v1

DEFEATING BACKGROUNDS

Background reduction:

- Go underground
- Clean environment
- Material screening & selection

х

- Background discrimination
 - Active veto shield
 - ER/NR identification

WIMP NUCLEON SI INTERACTION EXCLUSION LIMITS LANSCAPE

- To improve sensitivity:
 - larger exposure M × T and lower background
- To extend sensitivity at low mass WIMPs:
 - lower energy threshold
- Minimum of the curve:
 - depends on target nuclei

NOBLE LIQUID DM DETECTORS

Electroluminescence "S2" light Drift charge "S1" Scintillation light

Single phase, light readout

- High light yields, simple geometry, no E-fields
- Scintillation with PMTs
- LAr: DEAP-3600
- LXe: XMASS (until 2019)

Dual-Phase TPC with light readout

- Light and charge with PMTs
- 3D position resolution,
- improved energy resolution,
- discrimination based on S2/S1
- LAr: DarkSide-50 (until 2019),
- DarkSide-20k
- LXe: LZ, PandaX-4T, XENONnT

Superfluid ⁴*He*, phonon readout

- R&D phase for light DM
- Signals: phonons and rotons; detect excitations down to ~ 1 meV (via ejection of 4He atom), TES/MMC readout
- HeRALD, DELight

DM DETECTORS

KENON

XENON DETECTORS

XENON: lowest background from ER LZ: best limit for high WIMP masses

16

Credits: Jocelyn Monroe

LXe TIME PROJECTION CHAMBERS

- Detector scales: 10 t (LZ), 6 t (PandaX-4T) and 8.6 t LXe (XENONnT) total Xe mass
- TPCs with 2 arrays of 3-inch PMTs
- Kr and Rn removal techniques
- Ultra-pure water shields, n & µ vetos
- External and internal calibration sources
- Status: running towards the neutrino
 floor ⇒ first detection of ⁸B CEVNS

FIRST MEASUREMENTS OF 8 B NEUTRINO FLUX IN PANDAX AND XENONnT

PandaX (Exposure 1.20 (paired) and 1.04 (US2) tonne × yr): The data disfavors background-only hypothesis at 2.64σ . The measured ⁸*B* neutrino flux is $(8.4 \pm 3.1) \times 10^6$ cm⁻² s⁻¹

XenonNT (Exposure 3.51 tonne × yr): The data disfavors background-only hypothesis at 2.73σ . The measured ⁸*B* neutrino flux is $4.7^{+3.6}_{-2.3} \times 10^{6}$ cm⁻² s⁻¹

 10^{-44}

IDM-nucleon cross section $[cm^2]_{10-42}$ 10^{-42} 10^{-42} 10^{-43} 10^{-43}

 10^{-47}

 10^{-50}

 10^{0}

 10^{1}

 10^{2}

FUTURE LXe DETECTORS

- DARWIN/XLZD
- DARWIN: 50 t LXe (40 t active target) at LNGS; ~1900 3-inch PMTs (baseline design); Gd-doped water n and µ vetoes
- R&D and prototyping in progress
- > XLZD: 75 t LXe (60 t active target), several labs are considered
- PandaX-xT: > 30 t active volume at JinPing; 2 arrays of 2-inch PMTs

DARWIN collaboration JCAP 1611 (2016) 017

SCALING UP CHALLENGES

- LUX-ZEPLIN and XENONnT: 1.5 m e- drift and ~ 1.5 m diameter electrodes
- DARWIN/XLZD: 2.6 3.0 m new challenges
 - Design of electrodes: robustness (minimal sagging/ deflection), maximal transparency, reduced e- emission
 - Electric field: ensure spatial and temporal homogeneity, avoid charge-up of PTFE reflectors
 - High-voltage supply to cathode design, avoid high-field regions
 - Liquid level control
 - Cryogenic purification (222Rn and 85Kr below solar pp neutrino level)
- Electron survival in LXe: > 10 ms lifetime
- Diffusion of the e--cloud: size of S2-signals

DETECTOR DEMONSTRATORS

- Full scale demonstrators in z and in x-y, supported by ERC grants
 - Xenoscope, 2.6 m tall TPC and Pancake, 2.6 m ø TPC in double-walled cryostats
 - Both facilities available to the collaboration/consortium for R&D purposes
 - LowRad to demonstrate large-scale cryogenic distillation at Münster

Vertical demonstrator: Xenoscope

L. Baudis et al, JINST 16, P08052, 2021

Horizontal demonstrator: Pancake

Test electrodes with 2.6 m Ø

DM DETECTORS

ARGON

ARGON DETECTORS

LAr high mass: background discrimination ²³

LIQUID ARGON: THE DEAP-3600 EXPERIMENT

Single-phase LAr detector, located 2 km underground at SNOLAB

- 3.3 t target (1 t fiducial) in sealed ultra-clean acrylic vessel
- vessel is resurfaced in-situ to remove deposited Rn daughters after construction
- in-situ vacuum evaporated tetra-phenyl butadiene (TPB) wavelength shifter (128 nm 420 nm) with ~10 m₂ surface
 bonded 50 cm long light guides + PE shield against neutrons
- 255 8-inch PMTs (32% QE, 75% coverage)
- detector immersed in 8 m water shield, instrumented with PMTs to veto muons

LAr TIME PROJECTION CHAMBERS

ArDM @ Canfranc:

850 kg of active LAr 500 kg fiducial 28 8-inch PMTs

DarkSide-50 @ LNGS:

50 kg of LAr (dip in ${}^{39}\!Ar$)

33 kg fiducial

38 3-inch PMTs

Dark Matter search with underground argon

RADIOPURE ARGON FROM UNDERGROUND SOURCES

- ${}^{39}Ar \beta$ decay (Q = 570 keV, half-life 269 yr)
- ~1Bq/kg in atmosferic Ar
- Origin from ${}^{40}Ar(n,2n){}^{39}Ar$ in atmosphere
- Extraction of Ar from underground sources, where such processes are suppressed
- DS50 used 157 kg of UAr
- Depletion factor in ${}^{39}\!Ar: 1400 \pm 200$

LOW RADIOACTIVITY ARGON: URANIA & ARIA

1) UAr extraction at the URANIA plant.

³⁹Ar (β -decay) suppressed by ~ 10³ in underground CO2 reservoir in Cortez, Colorado UAr extraction rate: 250-330 kg/day Expected argon purity at outlet: 99.99%

3) Qualification at Canfranc, DArT in ArDM A single-phase LAr detector with active

volume ~1L, capable of measuring UAr to AAr ³⁹Ar depletion factors of the order of 1000 with 10% precision in weeks JINST 15 P02024

First module operated according to specs with nitrogen Run completed with Ar at the end of 2020 Eur. Phys. J. C (2023) 83:453 Full assembly about to start

THE DARKSIDE-20K DETECTOR @ LNGS

Inner Veto

Radiogenic *n*'s 32-ton underground LAr

- Membrane (ProtoDUNE-like) cryostat
- Atmospheric argon (AAr) volume (≈700 t)
- Vacuum vessel containing UAr and TPC/Veto
- Underground argon (UAr) volume (≈100 t)
- Inner detectors TPC and Neutron Veto with >25 m² SiPM arrays
- Outer Veto with SiPM arrays near the cryostat walls

THE DARKSIDE-20K DETECTOR @ LNGS

THE DARKSIDE-20K DETECTOR @ LNGS

- Acrylic (Hydrogen) + Argon
- Detection of 2,1 MeV gammas from neutron capture on H (53%) in TPC or Veto
 - 4п coverage: TPC walls, top and bottom endcaps
 - 40 cm thick UAr buffer + UAr in TPC
- Produced γ rays interact in UAr in both buffer and TPC
- > 3M ESR used as reflector and PEN as wavelength shifter
- Scintillation light detected by SiPMs in both buffer and TPC

LOW RADIOACTIVITY, HIGH EFFICIENCY SiPM PHOTOSENSORS

Photo Detection Unit 16 tiles arranged into 4 channels

Tile / photo-detector module 24 SiPMs + signal amplifier

- Wafer delivery from LFoundry started in 2022
- Packaging and assembly for TPC sensors:
 Nuova Officina Assergi (NOA), about to start operations
- Packaging and assembly for Veto sensors: RAL and Liverpool, UK
- Several test facilities to qualify production: Naples, Liverpool, Edinburgh, AstroCent

DARKSIDE-20K: PROTOTYPES

Proto-0 Detector @ Napoli

- Real experiment prototype test (~300 | LAr)
- Performance of the PDUs in LAr with real TPC (measurement of S1, S2)
- Robustness of the TPC design
- Electric field uniformity
- Study of the gas pocket thickness
- Runs foreseen in fall 2024

Mock-up System @ LNGS

- Mock-up test (~1 ton LAr) to validate the technical choices of the detector
- Robustness of the PMMA, Clevios and TPB coating on PMMA
- Electric field values and high voltage feedthroughs
- Resistor chains elements
- Grids and wires
- Cryogenics

HIGH MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

LOW MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

Sensitivity projection for a dualphase LAr TPC optimized for light dark matter searches through the ionization channel

NL DETECTORS

NEUTRINO PHYSICS

OPEN QUESTIONS IN NEUTRINO PHYSICS

- What are the absolute values of neutrino masses, and the mass ordering?
- * What is the nature of neutrinos? Are they Dirac or Majorana particles?
- What is the origin of small neutrino masses?
- What are the precise values of the mixing angles, and the origin of the large v mixing?
- Is the standard three-neutrino picture correct, or do other, sterile neutrinos exist?
- What is the precise value of the CP violating phase δ ?

NOBLE LIQUID DETECTORS

LIQUID ARGON TPC

- Originally proposed by Rubbia in 1977 for neutrino physics
- R&D over >3 decades, now detectors @ kton scale
 - ICARUS, µBooNE, LArlat, ArgonCube, SBND, ProtoDUNE

Ionization electrons drifted by uniform electric field towards readout anodic planes (drift ~1 mm/µs @ 500 V/cm)

* 3D reconstruction + calorimetry

VUV photons propagated and shifted to VIS photons

information on interaction time, triggering + calorimetry

NOBLE LIQUID DETECTORS

NOBLE LIQUID DETECTORS FOR NEUTRINO PHYSICS

Single phase LArTPC

Double phase LArTPC with charge r/o

LArtpc Neutrino experiments

- Enormous physics potential offered by high granularity imaging, extremely high resolution, low backgrounds:
 - Short-baseline neutrino physics (neutrino anomalies, precision cross-sections, BSM)
 - Long-baseline neutrino physics (precision 3-flavor oscillation physics)
 - Underground physics (proton decay, solar, supernova, ...)

- Booster Neutrino Beam $\nu_{\mu}(93.6\%), \nu_{\mu}(5.9\%), \nu_{e} + \bar{\nu}_{e}(0.5\%)$
- Sterile neutrino searches, BSM searches, crosssection measurements

DUNE EXPERIMENT

- High-power proton beam 1.2 MW upgradeable to 2.4 MW
- A high power, wide-band neutrino beam (~ GeV energy range)
- Near detector (575 m from the ν source 100 s millions of ν interaction)
- Far detector in South Dakota (~1300 km) and 1,5 km deep underground
- Phase I: 2×17 kton LArTPC; 2 additional modules in Phase II

DUNE EXPERIMENT

- Near Detector : measurements of ν_{μ} unoscillated beam.
- Far Detector: measurements of oscillated ν_{μ} and ν_{e} spectra
- THEN repeat for antineutrinos and compare oscillations of neutrinos and antineutrinos

DUNE FAR DETECTOR (PHASE I)

2 ×17 kton single phase LArTPCs

FD1-HD

- 4 TPC 3.6 m horizontal drift
- HV = -180 kV
- High-resistivity CPA for fast discharge prevention
- Anode: 150 APAs, each with 4 wire planes (Grid, 2x Induction, Collection)
- Photon Detectors: X-ARAPUCA modules embedded in APA

14 m

FD2-VD

- 2 TPC 6.5 m vertical drift
- HV = -300 kV
- Anode: 2 CRPs (top & bottom)
- Charge Readout via perforated Perforated PCB anode, fully immersed in LAr
- Doping w/ O(10 ppm) xenon for greater light collection uniformity
- Photon Detectors: X-ARAPUCA megacell modules integrated on cathode and on cryostat walls

PROTODUNE

PROTODUNE

DUNE NEAR DETECTOR COMPLEX (PHASE I)

- Measures the neutrino beam rate and spectrum to predict unoscillated event rates in the far detector
- Constrains systematic uncertainties (flux, cross sections, detector response) for oscillation measurements
- Additional physics program

 ND-LAr: 67 ton 7×5 array of modular 1×1×3 m LArTPCs with 50 cm drift, pixel readout and high coverage light readout

- TMS: magnetized steel range stack for measuring muon momentum/sign from ν_µ CC interactions in ND-LAr
 - DUNE-PRISM: ND-LAr + TMS move up to 28.5m off-axis
- SAND: on-axis magnetized neutrino detector with 1 ton LAr target (GRAIN), tracking (STT), and calorimeter (ECAL)

Raw 3D images of cosmic rays in tonscale prototype

DUNE PHASE II

- Far Detector with 4 modules
 - FD-3 SP LArTPC enhanced VD 4π concept TBD (by 2027)
 - FD-4 : «module of opportunity»: decision by 2028
- Beam power upgrade to 2.4 MW
- Near Detector: TMS replaced by ND-GAr
 - ND-LAr
 - ND-GAr important for higher precision *v*-Ar measurements and when the statistics reach ~200 kt-MW-yrs
 - SAND

convert TPC Field Cage structure into a fully active PDS \rightarrow LY ×2

DUNE PHASE II: EXPLORE NEW TECHNOLOGIES

PCB

- General LAr TPC Requirements for Low-Energy Physics
 - Iow E threshold (down to 100-10 keV)
 - good angular resolution (<1°)</p>
 - high position and vertex resolution (<1 mm)</p>
- Key improvements of the detector
 - Charge readout: from combination of 2D views to genuine 3D pixelated readout
 - ► LArPix, QPix
 - Light detection:
 - Xe doping, 4π readout, metalenses, metasurfaces
 - Light-charge integrated highly granular readout:
 - all-silicon unit based on VUV SiPMs with charge collection pads (SOLAR)
 - QPix + thin-film photoconductor (ASe) coating
 - Fully optical readout:
 - double phase LArTPC (ARIADNE)
 - Reconstruction algorithms with AI methods
 - Low radiological background

DUNE PHASE II: BLUE SKY

- Further Low-Energy Physics goals:
 - Measurement of lower-energy neutrinos in real time with high statistics
 - Ονββ
 - WIMP dark matter
 - CEvNS...
- Higher detector challenges:
 - External shielding
 - Materials selection QA/QC
 - Radon reduction
 - Low-radioactivity underground argon
 - % level energy resolution
 - % level Xe-doping
 - Photosensitive dopants

 10^{-4}

10-5

10-3

 10^{-4}

10-2

m_{lightest} [eV]

 10^{-1}

100

•••

NL DETECTORS

THE NATURE OF NEUTRINOS

 Can be probed with a rare nuclear decay, the double beta decay mode without emission of neutrinos (ΔL =2)

$$2n \rightarrow 2p + 2e^{-}$$

 $2p \rightarrow 2n + 2e^+$

 Expected signature: sharp peak at the Q-value of the decay

$$Q = E_{1e} + E_{2e} - 2m_e$$

Minimal detector requirements:

Large masses

High isotopic abundance

Ultra-low background noise

Good energy resolution

LIQUID XENON TPC: EX0-200

- At Waste Isolation Pilot Plant (WIPP, ~1600 m w.e.), took data fro, Sept 2011 Dec 2018, in two phases
- * 175 kg LXe in total, 80.6% enriched in ${}^{136}Xe$ (Q_{ββ} ~2.46 MeV)
- TPC with two drift regions, each with a radius of 18 cm and drift length of 20 cm; drift field: 380 V/cm (phase I) and 567 V/cm (phase II)
- Two measurements of energy deposited in event
 - Scintillation light (178 nm), by large avalanche photo-diodes (APDs)
 - Ionization charge, by 2 wire grids (induction and collection)
- TPC enclosed by a radio-pure, thin-walled Cu vessel in cryofluid, surrounded by passive shielding and an active muon veto system

LIQUID XENON TPC: EX0-200

LIQUID XENON TPC: THE nEXO EXPERIMENT

- TPC filled with enriched xenon, surrounded by 33 t of hydro-fluoro ether (HFE) as thermal bath and radiation shield; thin-walled, electro-formed Cu cryostat, water Cherenkov muon veto
- TPC vessel: Cu cylinder with 127.7 cm height & ø with 4.8 t (3.65 t) contained (active) Xe
- Charge: collected at the anode by ~3800 Channels in 120x10cm tiles
- Scintillation light: collected by SiPM arrays arranged in a barrel configuration ~7700 channels over 4.6m²
- [•] Combine both for <1% energy resolution at $Q_{\beta\beta}$

SUMMARY

- Neutrino and DM experiments exploring New Frontiers with Noble Liquids
- Technological challenges boost synergies in noble liquid experiments:
 - Time projection chambers (TPCs) for particle tracking and interaction visualization
 - Light and charge signal detection for particle identification and energy measurement
 - Cryogenic systems for noble liquid handling and purification
 - Data analysis, calibration and background reduction techniques
- Ever-growing community fostering innovation:
 - [►] Many more developments for CEvNS, 0vββ, low-mass DM, ...
 - R&D to bring the full potential of these great detectors!

several topics not covered here