INFAT SOUP 2024

1

The 3rd INFN School on Underground Physics: Theory & Experiments

SOUP 2024

NOBLE LIQUID DETECTORS, PART 2

Prof. Giuliana Fiorillo Università degli studi di Napoli "Federico II" and INFN - Sezione di Napoli

CONTENTS, PART 2

- ▸ Applications to direct dark matter detection and experiments
	- ๏ Brief review of direct detection principles
	- ๏ Argon DM detectors: ArDM, Darkside-50, DEAP-3600, DarkSide-20k
	- ๏ Xenon DM detectors: XMASS, XENON, LZ, PandaX, DARWIN/XLZD
- ▶ Applications to neutrino physics and experiments
	- ๏ Brief motivation and open questions in neutrino physics
	- ๏ DUNE (LAr)
	- ๏ EXO-200, nEXO (LXe)
- ▸ Summary

Slides courtesy of L. Baudis and R. Calabrese

NL DETECTORS

DARK MATTER

WHAT IS DARK MATTER? A spectrum spanning 80 orders of magnitude

WIMP paradigm: a good place to start looking

The Minimal WIMP Model Basic Assumptions:

- ๏ Single particle that does not interact with itself
- ๏ Interacts weakly with Standard Model
- ๏ 2→2 annihilations primarily in s-wave
- ๏ Annihilations set thermal abundance today

Nature 458, 587-589(2 April 2009)

WIMP WIND ON EARTH

▸ Goodman & Witten (1985): "Detectability of certain dark matter candidates"

$$
\frac{dR}{dE_R} = N_T \frac{\rho_\chi}{m_\chi} \times \int dv f(v) v \frac{d\sigma_\chi}{dE_R}
$$

- \circ ρ_χ galactic dark matter halo local density }
- o v relative velocity wrt terrestrial detector
- **●** $σ_χ$ elastic scattering off target nuclei → Particle physics

Astrophysics

Astrophysics

WIMP-NUCLEON SCATTERING

▸ Non-relativistic scattering *v*/*c* ≃ 10−³

$$
E_0 = \frac{1}{2} m_\chi v^2; \quad r = \frac{4 m_\chi m_N}{(m_\chi + m_N)^2}; \quad E_R = E_0 r \frac{(1 - \cos \theta)}{2}
$$

$$
\frac{dR}{dE_R} = \frac{R_0}{E_0 r} \exp\left(-\frac{E_R}{E_0 r}\right) \times \left[S(E_R)F^2(q^2)I\right]
$$

 $F^2(q^2)$ Form factor $S(E_R)$ seasonal modulation Interaction type *I*

- ▸ Contact interaction independent of momentum exchange (nucleus as a particle, with charge and spin)
	- ➡ standard SI/SD description
	- ➡ nuclear form factors generally included

INTERACTION CROSS SECTION VS WIMP MASS

9

EXPERIMENTAL CHALLENGE

- ▶ To observe a signal which is:
	- ๏ very small: low recoil energies < 100 keV
	- ๏ very rare: <1 event/(kg y) at low masses and < 1 event/(t y) at high masses
	- ๏ buried in backgrounds with > 106 higher rates:
		- Muon-induced neutrons: NRs
		- Cosmogenic activation of materials/targets: ERs
		- Radioactivity of detector materials: NRs and ERs
		- Target intrinsic isotopes: ERs

 10^{1} radioactivity (ER) $10⁰$ $\frac{1}{2}$

Event rate $\frac{1}{2}$ to⁻¹
 $\frac{1}{2}$ 10⁻²
 $\frac{1}{2}$ 10⁻³
 $\frac{1}{2}$ 10⁻⁵ neutrinos (ER) WIMP (NR) ER/NR discr. eutrons (NR) neutrino fog (NR) 10^{-5} 10^{-6} 80 90 100 10 20 30 60 70 Ω 40 50 Recoil Energy [keV]

arXiv:2404.19524v1

DEFEATING BACKGROUNDS

▸ **Background reduction:**

- ๏ Go underground
- ๏ Clean environment
- ๏ Material screening & selection
- ▸ **Background discrimination**
	- ๏ Active veto shield
	- ๏ ER/NR identification

WIMP NUCLEON SI INTERACTION EXCLUSION LIMITS LANSCAPE

- ▶ To improve sensitivity:
	- o larger exposure M \times T and lower background
- ▶ To extend sensitivity at low mass WIMPs:
	- ๏ lower energy threshold
- ▸ Minimum of the curve:
	- ๏ depends on target nuclei

NOBLE LIQUID DM DETECTORS

Electroluminescence "S2" light Drift charge "S1" Scintillation light

readout

- High light yields, simple
- geometry, no E-fields
- Scintillation with PMTs
- LAr: DEAP-3600
- LXe: XMASS (until 2019)

$\textsf{Single phase, light} \begin{array}{|c|c|c|c|}\hline \textsf{Value} & \textsf{Dual-Phase TPC with light} & \textsf{Superfluid} \ ^4He\hline \end{array}$ **readout**

- Light and charge with PMTs
- 3D position resolution,
- improved energy resolution, discrimination based on S2/S1
- LAr: DarkSide-50 (until 2019),
- DarkSide-20k
- LXe: LZ, PandaX-4T, XENONnT

Superfluid ⁴He, phonon **readout**

- R&D phase for light DM
- Signals: phonons and rotons; detect excitations down to ~ 1 meV (via ejection of 4He atom), TES/MMC readout
- HeRALD, DELight

DM DETECTORS

XENON

XENON DETECTORS

XENON: lowest background from ER LZ: best limit for high WIMP masses

16

 Credits: Jocelyn Monroe

LXe TIME PROJECTION CHAMBERS

- ▶ Detector scales: 10 t (LZ), 6 t (PandaX-4T) and 8.6 t LXe (XENONnT) total Xe mass
- ▸ TPCs with 2 arrays of 3-inch PMTs
- ▶ Kr and Rn removal techniques
- ▸ Ultra-pure water shields, n & μ vetos
- ▶ External and internal calibration sources
- ▶ Status: running towards the neutrino
\n<math display="block">floor \Rightarrow first detection of ⁸B CEVNS</math>

FIRST MEASUREMENTS OF ⁸B NEUTRINO FLUX IN PANDAX AND XENONnT

PandaX (Exposure 1.20 (paired) and 1.04 (US2) tonne \times yr): The data disfavors background-only hypothesis at 2.64σ . The measured ^{8}B neutrino flux is $(8.4 \pm 3.1) \times 10^{6}$ cm^{−2} s^{−1}

XenonNT (Exposure 3.51 tonne \times yr): The data disfavors background-only hypothesis at 2.73σ . The measured ${}^{8}B$ neutrino flux is $4.7^{+3.6}_{-2.3} \times 10^{6}$ cm⁻² s⁻¹

FUTURE LXe DETECTORS

- ▸ DARWIN/XLZD
- ▶ DARWIN: 50 t LXe (40 t active target) at LNGS; ~1900 3-inch PMTs (baseline design); Gd-doped water n and μ vetoes
- ▶ R&D and prototyping in progress
- ▸ XLZD: 75 t LXe (60 t active target), several labs are considered
- ▸ PandaX-xT: > 30 t active volume at JinPing; 2 arrays of 2-inch PMTs

DARWIN collaboration JCAP 1611 (2016) 017 DARWIN collaboration JCAP 1611 (2016) 017

Outer Vessel

IVETO

Inner Cu Vessel

Top PMT

Array

Active

Volume

Bottom

PMT Array

SCALING UP CHALLENGES

- ▸ LUX-ZEPLIN and XENONnT: 1.5 m e- drift and ~ 1.5 m diameter electrodes
- ▸ DARWIN/XLZD: 2.6 3.0 m new challenges
	- ๏ Design of electrodes: robustness (minimal sagging/ de flection), maximal transparency, reduced e- emission
	- ๏ Electric field: ensure spatial and temporal homogeneity, avoid charge-up of PTFE re flectors
	- ๏ High-voltage supply to cathode design, avoid high-field regions
	- ๏ Liquid level control
	- ๏ Cryogenic purification (222Rn and 85Kr below solar pp neutrino level)
- ▶ Electron survival in LXe: > 10 ms lifetime
- ▶ Diffusion of the e--cloud: size of S2-signals

DETECTOR DEMONSTRATORS

- ▸ Full scale demonstrators in z and in x-y, supported by ERC grants
	- ๏ Xenoscope, 2.6 m tall TPC and Pancake, 2.6 m ø TPC in double-walled cryostats
	- ๏ Both facilities available to the collaboration/consortium for R&D purposes
	- ๏ LowRad to demonstrate large-scale cryogenic distillation at Münster

Vertical demonstrator: Xenoscope

L. Baudis et al, JINST 16, P08052, 2021

Horizontal demonstrator: Pancake

Test electrodes with 2.6 m Ø

DM DETECTORS

ARGON

ARGON DETECTORS

LAr high mass: background discrimination **23**

LIQUID ARGON: THE DEAP-3600 EXPERIMENT

Single-phase LAr detector, located 2 km underground at SNOLAB

- ‣ 3.3 t target (1 t fiducial) in sealed ultra-clean acrylic vessel
- ‣ vessel is resurfaced in-situ to remove deposited Rn daughters after construction
- ‣ in-situ vacuum evaporated *tetra-phenyl butadiene* (TPB) wavelength shifter (128 nm 420 nm) with ~10 m2 surface \odot bonded 50 cm long light guides + PE shield against neutrons
- ‣ 255 8-inch PMTs (32% QE, 75% coverage)
- detector immersed in 8 m water shield, instrumented with PMTs to veto muons

LAr TIME PROJECTION CHAMBERS

ArDM @ Canfranc:

850 kg of active LAr 500 kg fiducial 28 8-inch PMTs

DarkSide-50 @ LNGS:

50 kg of LAr (dip in $39Ar$)

33 kg fiducial

38 3-inch PMTs

Dark Matter search with underground argon

RADIOPURE ARGON FROM UNDERGROUND SOURCES

- \rightarrow ³⁹Ar β decay (Q = 570 keV, half-life 269 yr)
- ‣ ~1Bq/kg in atmosferic Ar
- \sim Origin from $^{40}Ar(n,2n)^{39}Ar$ in atmosphere
- **Extraction of Ar from underground** sources, where such processes are suppressed
- ‣ DS50 used 157 kg of UAr
- \cdot Depletion factor in ³⁹Ar : 1400 \pm 200

LOW RADIOACTIVITY ARGON: URANIA & ARIA

1) UAr extraction at the URANIA plant.

 ^{39}Ar (β -decay) suppressed by $~\sim 10^3$ in underground CO2 reservoir in Cortez, Colorado UAr extraction rate: 250-330 kg/day Expected argon purity at outlet: 99.99%

3) Qualification at Canfranc, DArT in ArDM A single-phase LAr detector with active volume ~1L, capable of measuring UAr to AAr³⁹Ar depletion factors of the order of 1000 with 10% precision in weeks *JINST 15 P02024*

THE DARKSIDE-20K DETECTOR @ LNGS

3.6 m

A BACK

8 m

Inner Veto

Radiogenic n's 32-ton underground LAr

- ▸ Membrane (ProtoDUNE-like) cryostat
- ▸ Atmospheric argon (AAr) volume (≈700 t)
- ▸ Vacuum vessel containing UAr and TPC/Veto
- ▸ Underground argon (UAr) volume (≈100 t)
- ▸ Inner detectors TPC and Neutron Veto with >25 m2 SiPM arrays
- ▶ Outer Veto with SiPM arrays near the cryostat walls

Outer Veto

THE DARKSIDE-20K DETECTOR @ LNGS

THE DARKSIDE-20K DETECTOR @ LNGS

- ▸ Acrylic (Hydrogen) + Argon
- ▶ Detection of 2,1 MeV gammas from neutron capture on H (53%) in TPC or Veto
	- ๏ 4π coverage: TPC walls, top and bottom endcaps
	- ๏ 40 cm thick UAr buffer + UAr in TPC
- ▸ Produced γ rays interact in UAr in both buffer and TPC
- ▶ 3M ESR used as reflector and PEN as wavelength shifter
- ▶ Scintillation light detected by SiPMs in both buffer and TPC

LOW RADIOACTIVITY, HIGH EFFICIENCY SiPM PHOTOSENSORS

[∼] ²¹ m2 **Photo Detection Unit** 16 tiles arranged into 4 channels

Tile / photo-detector module 24 SiPMs + signal amplifier

- ▶ Wafer delivery from LFoundry started in 2022
- ▶ Packaging and assembly for TPC sensors: **Nuova Officina Assergi** (NOA), about to start operations
- ▶ Packaging and assembly for Veto sensors: RAL and Liverpool, UK
- ▸ Several test facilities to qualify production: Naples, Liverpool, Edinburgh, AstroCent

DARKSIDE-20K: PROTOTYPES

Proto-0 Detector @ Napoli Mock-up System @ LNGS

- ▶ Real experiment prototype test (~300 l LAr)
- ▶ Performance of the PDUs in LAr with real TPC (measurement of S1, S2)
- ▶ Robustness of the TPC design
- ▸ Electric field uniformity
- ▶ Study of the gas pocket thickness
- ▸ Runs foreseen in fall 2024

- ▸ Mock-up test (~1 ton LAr) to validate the technical choices of the detector
- ▸ Robustness of the PMMA, Clevios and TPB coating on PMMA
- ▶ Electric field values and high voltage feedthroughs
- ▸ Resistor chains elements
- ▶ Grids and wires
- ▸ Cryogenics

HIGH MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

LOW MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

Sensitivity projection for a dualphase LAr TPC optimized for light dark matter searches through the ionization channel

NL DETECTORS

NEUTRINO PHYSICS

OPEN QUESTIONS IN NEUTRINO PHYSICS

- ‣ What are the absolute values of neutrino masses, and the mass ordering?
- ‣ What is the nature of neutrinos? Are they Dirac or Majorana particles?
- ‣ What is the origin of small neutrino masses?
- **What are the precise values of the mixing angles, and the origin of the large v mixing?**
- ‣ Is the standard three-neutrino picture correct, or do other, sterile neutrinos exist?
- ‣ What is the precise value of the CP violating phase δ?

NOBLE LIQUID DETECTORS

LIQUID ARGON TPC

- ‣ Originally proposed by Rubbia in 1977 for neutrino physics
- R&D over >3 decades, now detectors @ kton scale
	- ‣ **ICARUS, µBooNE, LArIat, ArgonCube, SBND, ProtoDUNE**

‣ Ionization electrons drifted by uniform electric field towards readout anodic planes (drift ~1 mm/µs @ 500 V/cm)

3D reconstruction + calorimetry

‣ VUV photons propagated and shifted to VIS photons

information on interaction time, triggering + calorimetry

NOBLE LIQUID DETECTORS

NOBLE LIQUID DETECTORS FOR NEUTRINO PHYSICS

Single phase LArTPC Double phase LArTPC

with charge r/o

LArTPC NEUTRINO EXPERIMENTS

- ▸ Enormous physics potential offered by high granularity imaging, extremely high resolution, low backgrounds:
	- ▸ Short-baseline neutrino physics (neutrino anomalies, precision cross-sections, BSM)
	- ▸ Long-baseline neutrino physics (precision 3-flavor oscillation physics)
	- ▸ Underground physics (proton decay, solar, supernova, …)

- ‣ Booster Neutrino Beam *ν*_μ(93.6%), *ν*_μ(5.9%), *ν*_{*e*} + *ν*_{*e*}(0.5%)
- ‣ Sterile neutrino searches, BSM searches, crosssection measurements

DUNE EXPERIMENT

- ‣ High-power proton beam 1.2 MW upgradeable to 2.4 MW
- ‣ A high power, wide-band neutrino beam (~ GeV energy range)
- *γ* **Near detector (575 m** from the *ν* source 100 s millions of *ν* interaction)
- **Far detector in South Dakota (~1300 km) and 1,5 km deep underground**
- ‣ Phase I: 2×17 kton LArTPC; 2 additional modules in Phase II

DUNE EXPERIMENT

- \triangleright **Near Detector :** measurements of ν_{μ} unoscillated beam.
- \sim **Far Detector**: measurements of oscillated ν_{μ} and ν_{e} spectra
- **THEN** repeat for antineutrinos and compare oscillations of neutrinos and antineutrinos

DUNE FAR DETECTOR (PHASE I)

2 ×17 kton single phase LArTPCs

FD1-HD

- 4 TPC 3.6 m horizontal drift
- $HV = -180$ kV
- High-resistivity CPA for fast discharge prevention
- Anode: 150 APAs, each with 4 wire planes (Grid, 2x Induction, Collection)
- Photon Detectors: X-ARAPUCA modules embedded in APA

 14_m

FD2-VD

- 2 TPC 6.5 m vertical drift
- $HV = -300$ kV
- Anode: 2 CRPs (top & bottom)
- Charge Readout via perforated Perforated PCB PCB anode, fully immersed in LAr
- Doping w/ O(10 ppm) xenon for greater light collection uniformity
- Photon Detectors: X-ARAPUCA megacell modules integrated on cathode and on cryostat walls

PROTODUNE

PROTODUNE

DUNE NEAR DETECTOR COMPLEX (PHASE I)

- ▸ Measures the neutrino beam rate and spectrum to predict unoscillated event rates in the far detector
- ▸ Constrains systematic uncertainties (flux, cross sections, detector response) for oscillation measurements
- ▸ Additional physics program

๏ ND-LAr: 67 ton 7×5 array of modular 1×1×3 m LArTPCs with 50 cm drift, pixel readout and high coverage light readout

- ๏ TMS: magnetized steel range stack for measuring muon momentum/sign from ν_{μ} CC interactions in ND-LAr
	- ๏ DUNE-PRISM: ND-LAr + TMS move up to 28.5m off-axis
- ๏ SAND: on-axis magnetized neutrino detector with 1 ton LAr target (GRAIN), tracking (STT), and calorimeter (ECAL)

DUNE PHASE II

- ▸ **Far Detector with 4 modules**
	- **▶ FD-3 SP LArTPC enhanced VD 4π concept TBD (by 2027)**
	- ▸ FD-4 : «module of opportunity»: decision by 2028
- ▸ **Beam power upgrade to 2.4 MW**
- ▸ **Near Detector: TMS replaced by ND-GAr**
	- ▸ ND-LAr
	- **▶ ND-GAr important for higher precison** ν **-Ar measurements and** when the statistics reach ~200 kt-MW-yrs

▸ SAND

convert TPC Field Cage structure into a fully active PDS **→** LY ×2

DUNE PHASE II: EXPLORE NEW TECHNOLOGIES

PCB

- ▸ **General LAr TPC Requirements for Low-Energy Physics**
	- ▸ low E threshold (down to 100-10 keV)
	- ▸ good angular resolution (<1°)
	- ▸ high position and vertex resolution (<1 mm)
- ▸ **Key improvements of the detector**
	- ▸ Charge readout: from combination of 2D views to genuine 3D pixelated readout
		- ▸ LArPix, QPix
	- ▶ Light detection:
		- **▶ Xe doping, 4π readout, metalenses,** metasurfaces
	- ▸ Light-charge integrated highly granular readout:
		- ▸ all-silicon unit based on VUV SiPMs with charge collection pads (SOLAR)
		- ▸ QPix + thin-film photoconductor (ASe) coating
	- ▸ Fully optical readout:
		- ▸ double phase LArTPC (ARIADNE)
	- ▶ Reconstruction algorithms with AI methods
	- ▶ Low radiological background

J. Phys. G: Nucl. Part. Phys. 50 033001

DUNE PHASE II: BLUE SKY

- ▸ Further Low-Energy Physics goals:
	- ▸ Measurement of lower-energy neutrinos in real time with high statistics
	- ▸ 0νββ
	- ▸ WIMP dark matter
	- ▸ CEvNS…
- ▸ Higher detector challenges:
	- ▸ External shielding
	- ▸ Materials selection QA/QC
	- ▶ Radon reduction
	- ▸ Low-radioactivity underground argon
	- ▶ % level energy resolution
	- ▶ % level Xe-doping
	- ▶ Photosensitive dopants

 $m_{\textit{lightest}}$ [eV]

Meeting 2022

Meeting 2022

49

▸ …

NL DETECTORS

THE NATURE OF NEUTRINOS

‣ Can be probed with a rare nuclear decay, the double beta decay mode without emission of neutrinos ($\Delta L = 2$)

$$
2n \to 2p + 2e^-
$$

 $2p \rightarrow 2n + 2e^{+}$

‣ Expected signature: sharp peak at the Q-value of the decay

$$
Q = E_{1e} + E_{2e} - 2m_e
$$

Minimal detector requirements:

Large masses

High isotopic abundance

Ultra-low background noise

Good energy resolution

LIQUID XENON TPC: EXO-200

- ‣ At Waste Isolation Pilot Plant (WIPP, ~1600 m w.e.), took data fro, Sept 2011 Dec 2018, in two phases
- * 175 kg LXe in total, 80.6% enriched in ¹³⁶*Xe* (Q_{ββ} ~2.46 MeV)
- ‣ TPC with two drift regions, each with a radius of 18 cm and drift length of 20 cm; drift field: 380 V/cm (phase I) and 567 V/cm (phase II)
- ‣ Two measurements of energy deposited in event
	- ‣ Scintillation light (178 nm), by large avalanche photo-diodes (APDs)
	- Ionization charge, by 2 wire grids (induction and collection)
- **TPC** enclosed by a radio-pure, thin-walled Cu vessel in cryofluid, surrounded by passive shielding and an active muon veto system HV FILTER AND

LIQUID XENON TPC: EXO-200

LIQUID XENON TPC: THE nEXO EXPERIMENT

- ‣ TPC filled with enriched xenon, surrounded by 33 t of hydro-fluoro ether (HFE) as thermal bath and radiation shield; thin-walled, electro-formed Cu cryostat, water Cherenkov muon veto
- ‣ TPC vessel: Cu cylinder with 127.7 cm height & ø with 4.8 t (3.65 t) contained (active) Xe
- Charge: collected at the anode by \sim 3800 Channels in 120x10cm tiles
- Scintillation light: collected by SiPM arrays arranged in a barrel configuration ~7700 channels over 4.6m2
- \cdot Combine both for <1% energy resolution at $\Omega_{\beta\beta}$

55

SUMMARY

- ‣ Neutrino and DM experiments exploring New Frontiers with Noble Liquids
- ‣ Technological challenges boost synergies in noble liquid experiments:
	- ‣ Time projection chambers (TPCs) for particle tracking and interaction visualization
	- ‣ Light and charge signal detection for particle identification and energy measurement
	- ‣ Cryogenic systems for noble liquid handling and purification
	- ‣ Data analysis, calibration and background reduction techniques
- ‣ Ever-growing community fostering innovation:
	- ‣ Many more developments for CEνNS, 0νββ, low-mass DM, …
	- ‣ R&D to bring the full potential of these great detectors!

➟ *several topics not covered here*