14-15 October 2024 SOUP School - Bertinoro

Dark Matter evidences and candidates

Marco Cirelli (LPTHE Jussieu CNRS Paris)

Reviews/books on Dark Matter:

Dark Matter: Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Peter, 1201.3942 Bertone, Hooper, *History of dark matter*, 1605.04909 S. Profumo, *An Introduction to Particle Dark Matter*, World Scientific (2017) 2021 Les Houches Summer School on Dark Matter: https://indico.cern.ch/event/949654/ Cirelli, Strumia, Zupan, *Dark Matter: comprehensive review*, arXiv: 2406.01705 14-15 October 2024 SOUP School - Bertinoro

Dark Matter evidences and candidates

Marco Cirelli (LPTHE Jussieu CNRS Paris)

Reviews/books on Dark Matter:

Dark Matter: Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Peter, 1201.3942 Bertone, Hooper, *History of dark matter*, 1605.04909 S. Profumo, *An Introduction to Particle Dark Matter*, World Scientific (2017) 2021 Les Houches Summer School on Dark Matter: https://indico.cern.ch/event/949654/ Cirelli, Strumia, Zupan, *Dark Matter: comprehensive review*, arXiv: 2406.01705

OM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

it's a new, unknown corpuscle

no SM particle can fulfil

dilutes as 1/a³ with universe expansion

DM exists
it's a new, unknown corpuscle
makes up 26% of total energy 84% of total matter

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

no SM particle can fulfil

> اanck 2015, ᡠ 502.01589 (tab.4)

DM exists
it's a new, unknown corpuscle no SM particle can fulfil
makes up 26% of total energy 84% of total matter $\Omega_{DM}h^2 = 0$ neutral particle 'dark'...

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

DM exists no SM particle it's a new, unknown corpuscle can fulfil makes up 26% of total energy 84% of total matter la neutral particle 'dark'... Sold or not too warm very feebly interacting -with itself

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

p/m <<1 at CMB formation

-with ordinary matter ('collisionless')

DM exists no SM particle it's a new, unknown corpuscle can fulfil makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ la neutral particle 'dark'... cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

dilutes as 1/a³ with

universe expansion

(notice error!)

DM exists no SM particle it's a new, unknown corpuscle can fulfil makes up 26% of total energy 84% of total matter la neutral particle 'dark'... cold or not too warm very feebly interacting -with itself ('collisionless') stable or very long lived possibly a relic from the EU

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

p/m <<1 at CMB formation

-with ordinary matter

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

DM exists it's a new, unknown corpuscle makes up 26% of total energy 84% of total matter la neutral particle 'dark'... cold or not too warm very feebly interacting -with itself stable or very long lived possibly a relic from the EU searched for by

no SM particle dilutes as 1/a³ with can fulfil universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

p/m <<1 at CMB formation

-with ordinary matter ('collisionless')

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

OM exists it's a new, unknown corpuscle makes up 26% of total energy 84% of total matter less neutral particle 'dark'... cold or not too warm very feebly interacting -with itself ('collisionless') stable or very long lived possibly a relic from the EU

searched for by

no SM particle can fulfil

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

p/m <<1 at CMB formation

-with ordinary matter

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

OM exists no SM particle it's a new, unknown corpuscle can fulfil makes up 26% of total energy 84% of total matter la neutral particle 'dark'... cold or not too warm very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived possibly a relic from the EU searched for by **Direct Detection Indirect Detection** DM SM

SN

SM

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

p/m <<1 at CMB formation

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

SMک

between DM and DE?

The cosmic inventory

Most of the Universe is Dark

FAvgQ: what's the difference between DM and DE?

DM behaves like matter

- overall it dilutes as volume expands - clusters gravitationally on small scales - $w = P/\rho = 0$ (NR matter) (radiation has w = -1/3)

DE behaves like a constant

- it does not dilute
- does not cluster, it is prob homogeneous $w = \frac{D}{2} \sqrt{2} \sqrt{1}$

$$w = 1 / p = -1$$

- pulls the acceleration, FRW eq. $\frac{a}{a} = -\frac{4\pi O_N}{3}(1+3w)$

NB: Log-Log scale

NB: Log-Log scale

At the time of CMB formation (380 Ky)

How do we know that Dark Matter is out there?

1) galaxy rotation curves

2) clusters of galaxies

3) 'precision cosmology'

1) galaxy rotation curves

and indeed a 'gas' of non-interacting particles distributes like 1/r²

M 31

and indeed a 'gas' of non-interacting particles distributes like $1/r^2$

Caveat:

this treatment is over-simplified and is mostly a 'negative proof': visible matter with standard gravity can **not** reproduce the observed nonrapidly falling rotation curves, something else is needed.

Then, details are complex: curves are not exactly flat (so not necessarily $1/r^2$) and there are nonuniversal parametrs to tweak in each galaxy...

_M 31

and indeed a 'gas' of non-interacting particles distributes like 1/r²

M 31

and indeed a 'gas' of non-interacting particles distributes like 1/r²

M 31

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

Optical Dark Matter X-ray Gas

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

chandra.harvard.edu

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

1) galaxy rotation curves

Optical Dark Matte

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

Optical Dark Matter X-ray Gas

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitational lensing

ring of Dark Matter (2007)

1) galaxy rotation curves

2) clusters of galaxies 72 more collisions:

quantitative study of drag:

Harvey et al., Science, 1503.07675

1) galaxy rotation curves

2) clusters of galaxies

3) 'precision cosmology'

CMB & Large Scale Structure

LSS matter power spectrum

CMB & Large Scale Structure

LSS matter power spectrum

LSS matter power spectrum

How would the power spectra be without DM? (and no other extra ingredient)

MOND? TeVeS?

LSS

How would the power spectra be in MOND/TeVeS, without DM?

(here you can make it)

Introduction

DM exists no SM particle it's a new, unknown corpuscle can fulfil makes up 26% of total energy 84% of total matter la neutral particle 'dark'... cold or not too warm very feebly interacting -with itself ('collisionless') stable or very long lived possibly a relic from the EU

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

p/m <<1 at CMB formation

-with ordinary matter

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

Introduction

DM exists no SM particle it's a new, unknown corpuscle dilutes as 1/a³ with can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived $\tau_{\rm DM} \gg 10^{17} {\rm sec}$ possibly a relic from the EU

mass ???

interactions ???

A matter of perspective: plausible mass ranges

90 orders of magnitude!

A matter of perspective: plausible mass ranges

90 orders of magnitude!

DM can be made by a huge number of very light 'particles' or a tiny number of very heavy 'particles' as long as it is: neutral, cold, stable and feebly interacting

A matter of perspective: plausible mass ranges

90 orders of magnitude!

DM can be made by a huge number of very light 'particles' or a tiny number of very heavy 'particles' as long as it is: neutral, cold, stable and feebly int.

A matter of perspective: plausible mass ranges

90 orders of magnitude!

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as big as a dwarf galaxy DM mass

 $M \lesssim 10^4 M_{\odot}$

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as diffuse as a dwarf galaxy

DM de Broglie wavelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

as big as a dwarf galaxy DM mass $\underline{M} \lesssim 10^4 M_{\odot}$

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as diffuse as a dwarf galaxy

DM de Broglie wavelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

most likely most likely elementary composite

as big as a dwarf galaxy DM mass $M \lesssim 10^4 M_{\odot}$

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as diffuse as a dwarf galaxy

DM de Broglie wayelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

most likely most likely elementary composite

as big as a dwarf galaxy DM mass $M \lesssim 10^4 M_{\odot}$

best described as best described as classical field particle

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as diffuse as a dwarf galaxy

DM de Broglie wayelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

best described as best described as classical field particle

most likely most likely elementary composite

as big as a dwarf galaxy

DM mass

 $M \lesssim 10^4 M_{\odot}$

occupation number

$$N \simeq \frac{\rho}{M/\lambda^3}$$

 $M \lesssim 0.1 \, \text{keV}$ $M \gtrsim 0.1 \, \text{keV}$ necessarily bosonic or bosonic fermionic **Over**view of Particle Physics candidates for Dark Matter

A matter of perspective: plausible mass ranges

Thermal DM

DM as a thermal relic from the Early Universe

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few 0.1})$$
 (WIMP)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$

(WIMP)

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$

(WIMP)

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{\mathbf{1 \, Te V}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

olb,Turner, The Early Universe, 19

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{\mathbf{1 \, TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

Weakly Interacting Massive Particles

Candidates

A matter of perspective: plausible mass ranges

Thermal DM

Candidates

A matter of perspective:

SuSy neutralino

$m_{\rm h} \simeq 125 ~{\rm GeV}$

$m_{\rm h} \simeq 125 \,\,{\rm GeV}$

hh $\Delta m_{\rm h} \propto 10^{19} {
m GeV}$

 $m_{\rm h} \simeq 125 \,\,{\rm GeV}$

 \widetilde{t} : $h \Delta m_{\rm h} \propto -10^{19} \, {\rm GeV}$

h

 $\frac{h}{t} - \frac{h}{t} \Delta m_{\rm h} \propto 10^{19} \, {\rm GeV}$

R = -1

h

 ${\tilde{t}}$ $h \Delta m_{\rm h} \propto -10^{19} \, {\rm GeV}$

 $\overline{m_{\rm h}} \simeq 125 ~{\rm GeV}$

Candidates

A matter of perspective:

SuSy neutralino

