

 $^{14}N(p,\gamma)^{15}O$

Giulia Gosta and Matteo Rossi

General Meeting 2 July 2024

State of art

Significant discrepancy between experimental data and *R*-matrix fits around the resonance at $E_{cm} = 259$ keV

Main goal

Determine the ${}^{14}N(p,g){}^{15}O$ branching ratios in the 100 - 400 keV energy range.

Solid Targets

TiN sputtered targets + Ti inter-layer + Ta backing produced @ LNL

Target	Nominal Thickness (nm)
Dep159_1	140
Dep159_2	140
Dep158_3	100
Dep166_1	100
Dep166_2	100
Dep165_1	70
Dep165_2	70
Dep165_3	70

every day we performed a scan of the 278 keV resonance to monitor target stability

Detectors

4π -BGO + lead shielding all around

Target scan analysis Scan_fit/T159_1_scan1.txt χ^2 / ndf 3.1 / 19 Yield [a.u.] wg 6.858 ± 0.1381 Gamma1/2 0.7038 ± 0.06489 DE 27.92 ± 0.1077 Gamma2/2 1.64 ± 0.1181 **Res Energy** 278 ± 0.04569 Offset -0.4793 ± 0.26 28 keV 275 300 310 315 E_p [keV] 280 285 290 295 305 Scan_fit/T165_1_scan1.txt χ^2 / ndf 2.096 / 22 wg 6.723 ± 0.09317 Gamma1/2 0.7419 ± 0.05054 14.11 ± 0.07064 DE Gamma2/2 1.372 ± 0.07011 Res Energy 278.3 ± 0.03647 -0.3303 ± 0.1353 Offset 14 keV • • 275 300 E_p [keV] 295 280 285 290

Target	Nominal Thickness (nm)	Nominal Thickness (keV)	Measured thickness from M. Campostrini (keV)	Measured thickness (keV)	Accumulated Charge (C)
Dep158_3	100	17	20,7	20,2 +- 0,2	245
Dep159_1	140	24	27,7	27,9 +- 0,1	96
Dep159_2	140	24	27,7	27,2 +- 0,1	62
Dep165_1	70	12	14,4	14,11 +- 0,07	81
Dep166_1	100	17	20,4	20,02 +- 0,09	193
Dep166_2	100	17	20,4	20,03 +- 0,08	68
Dep165_2	70	12	tbd	14,2 +- 0,07	126
Dep165_3	70	12	tbd	Analysis s	till ingoing

 $Y = N * \left[\tan^{-1} \frac{E - E_r}{\Gamma_1} - \tan^{-1} \frac{E - E_r - \Delta E}{\Gamma_2} \right] + h$

General Meeting 2 July 2024 - Giulia Gosta

Data taking

- First campaign (February 2024):
 - Targets: 158_3 (100nm), 159_1 (140nm) and 159_2 (140nm)
 - Energies measured: 400, 397, 368, 350, 324, 305, 270, 250, 200 keV
- Second campaign (April 2024):
 - Targets: 165_1 (70nm), 166_1 (100nm) and 166_2 (100nm)
 - Energies measured: 400, 385, 350, 337, 315, 276, 270, 260, 180 keV
- Third campaign (June 2024):
 - Targets: 165_2 (70nm) and 165_3 (70nm)
 - Energy measured: 150 keV

E _p [keV]	Target thickness @ 278 keV [keV]	Beam charge [C]	
400	14.11	17.3	
400	27.08	21.6	
397	20.25	20.2	
385	14.06	23.3	
368	27.60	13.2	
368	20.25	17.2	
350	13.96	20	
350	27.60	6.3	
337	13.96	17.7	
324	20.03	23.4	
315	13.74	18.5	
305	19.83	17.6	
276	19.64	22.1	
270	27.00	31.4	
260	19.73	43.0	
251	19.77	35.8	
230	19.52	64.0	
200	27.22	108.1	
200	19.37	38.2	
180	19.22	161	
150	14.16	237	

Total S-factor

- Target profile included for each run ۲
- Approx. efficiency (60%) ۲
- Constant S-factor approximation (as a preliminary analysis) ۰

$$S = \frac{Yield(E_0)}{\int_{E_0 - \Delta E}^{E_0} \frac{P(x)e^{-2\pi\eta}}{\epsilon_{eff}(E_0)E_{CM}} dE} \qquad x = \frac{dE}{\epsilon(E_0)}$$

Fit:

Sum-peak First escape or first escape + 6791 keV Fluorine or 6175 keV **Error function for continuum Compton**

dE

Total S-factor

Some corrections still needed:

- the S-factor is not constant within the target
- Experimental efficiency to be checked

Branching ratio

Gated spectrum: Energy distribution of events that contribute to the sum peak

Test on resonance branching ratios

- Done with a very preliminary MC geometry (see Matteo presentation)
- Summing effect should be checked

Analysis @ $E_p = 150 \text{ keV}$

¹⁸O(p,g)¹⁹F In the target or build-up

General Meeting 2 July 2024 - Giulia Gosta

Summary

Energies to be measured: 140, 110 keV

Next steps with data analysis:

- Fine tune simulations
- Refine total S-factor calculation
- Run fits on gated spectra to evaluate branching's at all energies

Monte Carlo geometry update

Monte Carlo geometry update

Spectra - 60Co

Spectrum integral in [850,1750] keV and [2300,2700] keV

 $\frac{Area_{EXP} - Area_{MC}}{Area_{EXP}}$

Spectra - 137Cs

Spectrum integral in [460,860] keV

 $Area_{EXP} - Area_{MC}$ $Area_{EXP}$

What's next?

- Re-calibrate experimental energy spectra
- Calculate peak efficiency
- Simulate ${}^{14}N(p,\gamma){}^{15}O$ resonance @ 278 keV