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Quantum ground state preparation
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Applications
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❖Computer Science

❖Quantum chemistry

❖Machine learning

❖Physics
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Quantum Optimization 
Combinatorial optimization: Minimization of a single valued function of discrete variables

Examples
C(b) = 5 0 1

1 0

1Ecl(b) = − = − ∑
⟨i, j⟩

(bi ⊕ bj)C(b)

bj = (1 − ̂σz)/2

bit:  b = 0,1
qubit:  |ψ⟩ = a0 |0⟩ + a1 |1⟩ = (a0

a1)
Pauli matrices:  ̂σ x = (0 1

1 0), ̂σy = (0 −i
i 0 ), ̂σz = (1 0

0 −1)

Optimal configuration? Ground state ?|ψground⟩

Ĥz =
1
2 ∑

⟨i, j⟩

Jij( ̂σz
i ̂σz

j − 1)

MaxCut:

Ecl(b) = − ∑
⟨i, j⟩

Jij(bi ⊕ bj)weighted-MaxCut:

Ecl(b) = − ∑
⟨i, j⟩

Jij(bi ⊕ bj)
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Quantum Optimization 

Approximate ground state ?|ψground⟩
Analog quantum optimization Digital quantum optimization 

Review: T. Albash and D. A. Lidar, Rev. Mod. Phys. (2018) [E. Farhi, et al, arXiv:1411.4028 (2014)]
2

Hardware Grid Three-Regular MaxCut Sherrington-Kirkpatrick Model d.a. b. c.

FIG. 1. We studied three families of optimization problems: a. Hardware Grid problems with a graph matching the hardware
connectivity of the 23 qubits used in this experiment. b. MaxCut on random 3-regular graphs, with the largest instance
depicted (22 qubits). c. The fully-connected Sherrington-Kirkpatrick (SK) model shown at the largest size (17 qubits). d.
QAOA uses p applications of problem and driver unitaries to approximate solutions to optimization problems. The parameters
� and � are shared among qubits in a layer but di↵erent for each of the p layers.

The combinatorial optimization problems we study in
this work are defined through a cost function C(z) with
a corresponding quantum operator C given by

C =
X

j<k

wjkZjZk (1)

where z is a classical bitstring, Zj denotes the Pauli Z
operator on qubit j and the wjk correspond to scalar
weights with values {0,±1}. Because these clauses act
on at most two qubits we are able to associate a graph
with a given problem instance; if wjk 6= 0, there is an
edge between j and k in the graph. We will study three
families of problem graphs depicted in Figure 1.

The shallowest depth version of QAOA consists of the
application of two unitary operators. At higher depths
the same two unitaries are sequentially reapplied but
with di↵erent parameters. We denote the number of re-
peated application of this pair of unitaries as p, giving 2p
parameters. The first unitary prescribed by QAOA is

UC(�) = e
�i�C =

Y

j<k

e
�i�wjkZjZk , (2)

which depends on the parameter � and applies a phase
to pairs of bits according to the problem-specific cost
function. The second operation is the driver unitary

UB(�) = e
�i�B =

Y

j

e
�i�Xj , B =

X

j

Xj (3)

where Xj denotes the PauliX operator acting on qubit j.
This unitary drives transitions between bitstrings within
the superposition state. These operators can be imple-
mented by sequentially evolving under each term of the
cost function, as suggested by Eq. (2) and Eq. (3).

For depth p and n qubits we prepare the state param-
eterized by � = (�1, . . . , �p) and � = (�1, . . . ,�p)

|�,�i = UB(�p)UC(�p) · · ·UB(�1)UC(�1)|+i⌦n
, (4)

where |+i⌦n is the symmetric superposition of all 2n

computational basis states. The application of the

QAOA circuit to this initial state is depicted in Figure 1d.
For a given p, we can find parameters to minimize the ex-
pectation value of the cost

hCi = h�,�|C|�,�i. (5)

For comparison among problem instances, we divide by
Cmin = minz C(z), which is negative for all problems we
study, so we are in fact maximizing hCi/Cmin.

II. COMPILATION AND PROBLEM FAMILIES

We approach compilation as two distinct steps: routing
and gate synthesis. The need for routing arises when sim-
ulating UC for a cost function C defined on a graph that
is not a subgraph of our planar hardware connectivity. To
simulate such UC we perform layers of swap gates (form-
ing a swap network) which permute qubits such that all
edges in the problem graph correspond to an edge in the
hardware graph at least once, at which point the corre-
sponding cost function terms can be implemented. An
example of such a swap network is depicted in Figure 2a.
The final compilation step, gate synthesis, involves

decomposing arbitrary 1- and 2-qubit interactions into
physical gates supported by the device (see, e.g. Fig-
ure 2b). The physical gates used in this experiment are
arbitrary single-qubit rotations and a two-qubit entan-
gling gate native to the Sycamore hardware which we re-
fer to as the syc gate and define in Figure 2c. Through
multiple applications of this gate and single-qubit rota-
tions, we are able to realize arbitrary entangling gates.
Compilation details can be found in Appendix A. The av-
erage two-qubit gate fidelities on this device were 99.4%
as measured by cross entropy benchmarking [1] and aver-
age readout fidelity was 95.9% per qubit. We now discuss
compilation for the three families of optimization prob-
lems studied in this work.
Hardware Grid Problems. Swap networks are not

required when the problem graph matches the connectiv-
ity of our hardware; this is the main reason for studying
such problems despite results showing that problems on

Ĥz = ∑
⟨i, j⟩

Jij ̂σz
i ̂σz

j

2
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FIG. 1. We studied three families of optimization problems: a. Hardware Grid problems with a graph matching the hardware
connectivity of the 23 qubits used in this experiment. b. MaxCut on random 3-regular graphs, with the largest instance
depicted (22 qubits). c. The fully-connected Sherrington-Kirkpatrick (SK) model shown at the largest size (17 qubits). d.
QAOA uses p applications of problem and driver unitaries to approximate solutions to optimization problems. The parameters
� and � are shared among qubits in a layer but di↵erent for each of the p layers.

The combinatorial optimization problems we study in
this work are defined through a cost function C(z) with
a corresponding quantum operator C given by

C =
X

j<k

wjkZjZk (1)

where z is a classical bitstring, Zj denotes the Pauli Z
operator on qubit j and the wjk correspond to scalar
weights with values {0,±1}. Because these clauses act
on at most two qubits we are able to associate a graph
with a given problem instance; if wjk 6= 0, there is an
edge between j and k in the graph. We will study three
families of problem graphs depicted in Figure 1.

The shallowest depth version of QAOA consists of the
application of two unitary operators. At higher depths
the same two unitaries are sequentially reapplied but
with di↵erent parameters. We denote the number of re-
peated application of this pair of unitaries as p, giving 2p
parameters. The first unitary prescribed by QAOA is

UC(�) = e
�i�C =

Y

j<k
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�i�wjkZjZk , (2)

which depends on the parameter � and applies a phase
to pairs of bits according to the problem-specific cost
function. The second operation is the driver unitary

UB(�) = e
�i�B =

Y

j

e
�i�Xj , B =

X

j

Xj (3)

where Xj denotes the PauliX operator acting on qubit j.
This unitary drives transitions between bitstrings within
the superposition state. These operators can be imple-
mented by sequentially evolving under each term of the
cost function, as suggested by Eq. (2) and Eq. (3).

For depth p and n qubits we prepare the state param-
eterized by � = (�1, . . . , �p) and � = (�1, . . . ,�p)

|�,�i = UB(�p)UC(�p) · · ·UB(�1)UC(�1)|+i⌦n
, (4)

where |+i⌦n is the symmetric superposition of all 2n

computational basis states. The application of the

QAOA circuit to this initial state is depicted in Figure 1d.
For a given p, we can find parameters to minimize the ex-
pectation value of the cost

hCi = h�,�|C|�,�i. (5)

For comparison among problem instances, we divide by
Cmin = minz C(z), which is negative for all problems we
study, so we are in fact maximizing hCi/Cmin.

II. COMPILATION AND PROBLEM FAMILIES

We approach compilation as two distinct steps: routing
and gate synthesis. The need for routing arises when sim-
ulating UC for a cost function C defined on a graph that
is not a subgraph of our planar hardware connectivity. To
simulate such UC we perform layers of swap gates (form-
ing a swap network) which permute qubits such that all
edges in the problem graph correspond to an edge in the
hardware graph at least once, at which point the corre-
sponding cost function terms can be implemented. An
example of such a swap network is depicted in Figure 2a.
The final compilation step, gate synthesis, involves

decomposing arbitrary 1- and 2-qubit interactions into
physical gates supported by the device (see, e.g. Fig-
ure 2b). The physical gates used in this experiment are
arbitrary single-qubit rotations and a two-qubit entan-
gling gate native to the Sycamore hardware which we re-
fer to as the syc gate and define in Figure 2c. Through
multiple applications of this gate and single-qubit rota-
tions, we are able to realize arbitrary entangling gates.
Compilation details can be found in Appendix A. The av-
erage two-qubit gate fidelities on this device were 99.4%
as measured by cross entropy benchmarking [1] and aver-
age readout fidelity was 95.9% per qubit. We now discuss
compilation for the three families of optimization prob-
lems studied in this work.
Hardware Grid Problems. Swap networks are not

required when the problem graph matches the connectiv-
ity of our hardware; this is the main reason for studying
such problems despite results showing that problems on

Time  
evolution

Ĥ(t)

|ψoutput⟩ = Texp (−
i
ℏ ∫

τ

0
Ĥ(t)dt) |ψ0⟩ |ψoutput⟩ = …Ûz(γ2)Ûx(β2)Ûz(γ1)Ûx(β1) |ψ0⟩

complicated quantum dynamics many simple quantum gates
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Example: quantum search

Search an item in an unsorted list of  items n = 2N
Grover’s problem

Database:  binary strings (classical spin configurations) of length N

Marked item: eg. | z̄⟩ = |↑ ↓ ↑ ↑ ↓ ↓ ⋯ ↓ ↓ ↑⟩

Runtime of classical sequential search: τ ∝ n

0.0 0.5 1.0
s

0.0

0.5

1.0

E
E1ex

Egs

¢min

Δmin = Δ(sc =
1
2

) =
1

n

̂H (s(t)) = s(t)[1 − | z̄⟩⟨z̄ | ] + (1 − s(t))[1 − | + ⟩⟨ + | ]

Quantum Annealing for Grover’s problem

[Roland and Cerf, PRA (2002)]
0.0 0.5 1.0

t/ø

0.0

0.5

1.0

s

Linear

Linear s(t) (constant speed): τ ∝
1

Δ2
min

∝ n

Smart s(t) (slows down near ): sc τ ∝
1

Δmin
∝ n

0.0 0.5 1.0

t/ø

0.0

0.5

1.0

s

Linear

Roland-Cerf
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The key role of s(t)

Search an item in an unsorted list of  items n = 2N
Grover’s problem

[Cubitt et al.,``Undecidability of the spectral gap’’, Nature (2015)]

Optimal control of the schedule is crucial!

Optimal control of the schedule required  
spectral information

0.0 0.5 1.0
s

0.0

0.5

1.0

E
E1ex

Egs

¢min

0.0 0.5 1.0

t/ø

0.0

0.5

1.0

s

Linear

Roland-Cerf

How do we do it in general,  
when spectral information is not available?

[Z Jiang, et al PRA (2017)]



Quantum Approximate 
Optimization
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Quantum approximate optimization algorithm
[E. Farhi, et al, arXiv:1411.4028 (2014)]

[Blekos, et al Phys. Rep. (2024)]

Hp = Hz =
N

∑
i=1

̂σz
i ̂σz

i+1

Hx = −
N

∑
i=1

̂σx
i

Tized-
digitized-QA

QAOA Ansatz
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Barren plateaus in quantum neural networks

∇E = ( ∂E
∂γ1

,
∂E
∂γ2

…
∂E
∂β1

∂E
∂β2

…)
Var [ ∂E

∂θ ] → 0 Var [ ∂E
∂θ ] ≠ 0

Gradient of the cost function
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QAOA as Markov decision process

episode     →   through  
 state S     →  instantaneous 

                  observable O     →     
                         action A     →  
                        reward R     →  

|ψ0⟩ |ψP⟩
|ψt⟩

⟨ψt |O |ψt⟩
(γm, βm)
r = − δt,P⟨ψt | ̂H target |ψt⟩

O(z) = ⟨ψt | ̂H z |ψt⟩

O(x) = ⟨ψt | ̂H x |ψt⟩

Two Observables

Require multiple quantum 
measurements!

[Wauters, et al., Phys. Rev. Res. (2020)]

Proximal Policy Optimization (PPO) 

RL library:
https://spinningup.openai.com 

Quantum env:
https://github.com/mwauters92/QuantumRL

https://spinningup.openai.com/
https://github.com/mwauters92/QuantumRL
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Quantum Ising Chain/Ring of disagrees

̂H z =
N

∑
i=1

̂σz
i ̂σz

i+1
̂H x = −

N

∑
i=1

̂σx
i

ϵres
P (γ, β) =

EP(γ, β) − Emin

Emax − Emin
∈ [0,1]

residual energy

(relative error)

̂H target = ̂H z + h ̂H x

h
Quantum − Para

10−1

Anti-Ferro
classical critical

Ûm = e−iβm ̂H x e−iγm ̂H z

|ψP(γ, β)⟩ = ÛP⋯Û2Û1 |ψ0⟩

EP(γ, β) = ⟨ψP(γ, β) | ̂H target |ψP(γ, β)⟩

Emax = N
Emin = − N

h = 0
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Translationally invariant Ising Chain

0 2 4 6 8
t

0.0

0.5

1.0

s P = 8, ø = 9.76

continuous-QA

step-QA

sm =
γm

βm + γm

Allows comparison with digital-QA schedulêH (sm) = sm ̂H target + (1 − sm) ̂H driving

Nepo = 1024
P = 8

RL
RL + LO
Iterative LO

sm

m /(P + 1)

III. RL converges to QAOA iterative 
solution

Total training epochs

I. Random action choices

Nepo = 128
P = 8

sm

m /(P + 1)

II. Large trajectory dispersion. RL+LO 
fall on the same smooth minimum 
(iterative LO)

Analyze action choice
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Random Ising Chain
̂H z =

N

∑
i=1

Ji ̂σz
i ̂σz

i+1  Uniformly disturbuted in  Ji [0,1]

Same phenomenology of uniform 
TFIM: Local optimization leads to 
lower energy for P > 6

Open issues:
‣No analytical result
‣Is solution optimal?
‣Better than QA? P

ϵres
P

Makes the problem harder
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Random Ising Chain (transferability)

III. RL converges to QAOA iterative 
solution

Policy transferability:

I. Train a small system 
( ) on single disorder 
instance

II. Get approximate solution 

III. Use  to 
initialize a local 
optimization on larger 
system ( )

N = 8

(γ⋆, β⋆)N=8

(γ⋆, β⋆)N=8

N = 128

Reduces used quantum 

resources

sm
P = 12
Nepo = 1024

m /(P + 1)



Enhancing the counterdiabatic rotated ansatz for quantum annealing Glen Bigan Mbeng

Construction of digitized-QA schedules

ĤT =
N

∑
j=1

̂σz
j ̂σz

j+1 − gx

N

∑
j=1

̂σx
j − gz

N

∑
j=1

̂σz
j

[McClean, et al, PRA (2018)]Barren plateaus problem

‣ Gradients vanish exponentially (flat landscape) 

[Larocca, et al, Quatum (2022)]

gz = gx = 1
[Mele, et al, PRA (2022)]

Smooth schedules

‣ Gradients in a neighbourhood of radius   


‣ Transferred smooth schedule avoids barren plateaus

ϵ
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ϵ = 0.05[Torta, et. Al PRB (2022)] 
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Hardware challenge:

Connectivity
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Parity Architecture

HP =
n

∑
i=1

i−1

∑
j=1

Jijsisj HLHZ =
N

∑
i=1

Ji ̂σz
i + C

L

∑
l=1

(1 − ̂σz
l1

̂σz
l2

̂σz
l3
[ ̂σz

l4
])

❖ The LHZ architecture maps an all-to-all 
connected spin model to a spin model 
with only quasi-local interactions. 


❖ The physical qubits encode the parity of 
the logical qubits. 


❖ No long-range interactions but only 
local 3- or 4-body couplings are 
necessary. 


❖ The parity architecture requires nearest-
neighbour interactions on a square 
lattice, regardless of the qubit platform.

[Lechner, Hauke, and Zoller, Sci. Adv. 1, (2015)]

n = 4 N = 6 �(i)
z �(j)

z

1

1

0

0

�̂(k)
z

sisj ̂σz
k

12

13

14

23

24

340 1

0

0

1

1

1 2 3 4

12 23 34

14

13 24

ĤCĤz
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Parity compilation

2623
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14

45 56

16
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3
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12
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13

14
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16

24
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26 36 46

35

LHZ Compiler

12

26

16

35

26

3445

35

56
14

45

56

16

14

34

12

23

23

[Ender, et al,  Quantum (2023)]
Sparse graphs

1 2 3 4 5

Hypergraphs 
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Parity  based QAOA

|ψ(β, γ, Ω)⟩ = Ũx(βp)ŨP(γp)Ũc(Ωp) ⋯ Ũx(β1)ÛP(γ1)Ũc(Ω1) |ψ0⟩
Parity QAOA ansatz:

• Fully parallelizable 

• Generalisation to k-body terms


• Uses fewer CNOT gates 


• Universal quantum computing

Ũx(β) = ∏
j

e−iβσ̃ x
j

Ũp(γ) = e−iγH̃P

Ũc(γ) = e−iΩH̃c

|1i Rz(⌦)

|2i

|3i

|4i

[Fellner,  et al., PRL (2022)]
[Lechner, IEEE Trans. Quantum Eng. (2020)]

[Ender,  et al. arXiv (2021)]

e−iΩσ̃z
1σ̃z

2σ̃z
3σ̃z

4 =

Decoding step: high chance of measuring invalid states

4-qubit gates
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Performance of parity QAOA
Su

cc
es

s 
pr

ob
ab

ilit
y

CNOT gate error

• Search is restricted to Cliff

• Computable lower bound on perfromance

[Weidinger, et al PRA 2023]

[Weidinger, et al arXiv 2024]

(a) (b)

N = 7 N = 7 N = 21N = 21

(a) (b)

N = 7 N = 7 N = 21N = 21

•  classical variables


•  spanning trees


• Imperfect quantum gates


•  copies for rerouting 

nl = 6

m = 6

np/nl = 2.5
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Gate sequence

What is the optimal gate sequence? 
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RL for gate sequences
[Haslinger, et al, ongoing work]
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Performace across different istances
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Summary

❖ The presence of barren plateaus hinders the performance of QAOA


❖ The reinforcement learning optimization converges to smooth optimal 
schedules, avoiding barren plateaus

❖ Few observables needed for the learning process

❖ Optimal gates and parameters can be transferred among different 
system sizes


