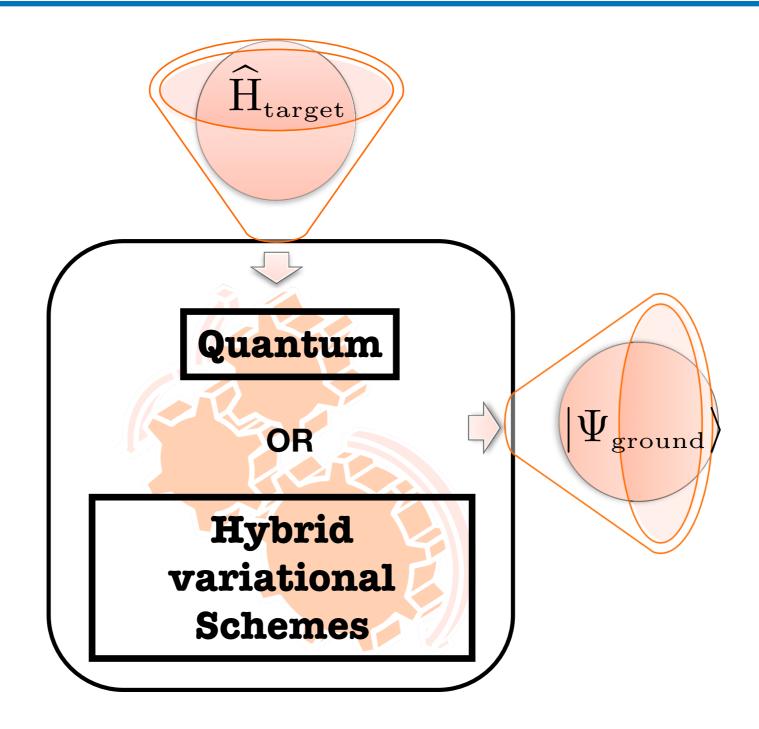
Parameter optimization strategies in variational quantum algorithms

Glen Bigan Mbeng

Seminario INFN, Bari, Italy 18th March, 2025

Quantum ground state preparation

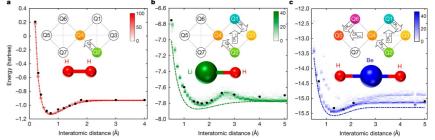


Applications

LETTER

Quantum chemistry

Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets Abhinav Kandala¹*, Antonio Mezzacapo¹*, Kristan Temme¹, Maika Takita¹, Markus Brink¹, Jerry M. Chow¹ & Jay M. Gambetta¹



Computer Science

Traffic Flow Optimization Using a Quantum Annealer

Florian Neukart^{1*}, Gabriele Compostella², Christian Seidel², David von Dollen¹, Sheir Yarkoni³ and Bob Parney³

 \triangleleft

Z

Efficiency of quantum vs. classical annealing in nonconvex learning problems

⁴Bocconi Institute for Data Science and Analytics, Bocconi University, 20136 Milan, Italy; ^bIstituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Turin, Italy; and ⁴Condensed Matter and Statistical Physics Group, International Centre for Theoretical Physics, 34151 Trieste, Italy Edited by William Bialek, Princeton University, Princeton, NJ, and approved January 2, 2018 (received for review June 26, 2017)

doi:10.1038/nature23879



Physics

Parameter optimization strategies in variational quantum algorithm

Quantum Optimization

Combinatorial optimization: Minimization of a single valued function of discrete variables $C(\mathbf{b}) = 5 \mathbf{4}$ **Examples** $E_{cl}(\mathbf{b}) = -C(\mathbf{b}) = -\sum (b_i \oplus b_j)$ **MaxCut:** weighted-MaxCut: $E_{cl}(\mathbf{b}) = -\sum J_{ij}(b_i \oplus b_j)$ **qubit**: $|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ bit: b = 0,1Pauli matrices: $\hat{\sigma}^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{\sigma}^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{\sigma}^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ **Optimal configuration?** Ground state $|\psi_{\text{ground}}\rangle$? $\hat{H}_z = \frac{1}{2} \sum J_{ij} (\hat{\sigma}_i^z \hat{\sigma}_j^z - 1)$ $b_i = (1 - \hat{\sigma}^z)/2$ $E_{cl}(\mathbf{b}) = -\sum J_{ij}(b_i \oplus b_j)$ $\langle i, j \rangle$

Parameter optimization strategies in variational quantum algorithm

universität

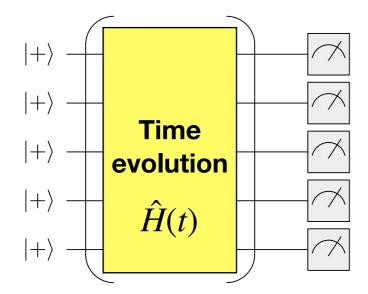
Quantum Optimization

$$\hat{H}_{z} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z}$$

Approximate ground state $|\psi_{\text{ground}}\rangle$?

Analog quantum optimization

Review: T. Albash and D. A. Lidar, Rev. Mod. Phys. (2018)

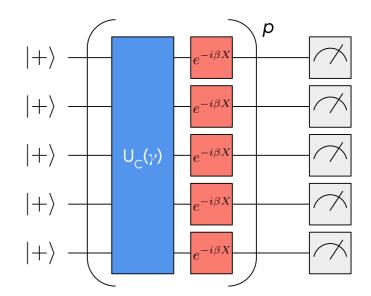


complicated quantum dynamics

$$|\psi_{\text{output}}\rangle = \text{Texp}\left(-\frac{i}{\hbar}\int_{0}^{\tau}\hat{H}(t)dt\right)|\psi_{0}\rangle$$

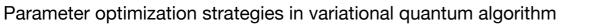
Digital quantum optimization

[E. Farhi, et al, arXiv:1411.4028 (2014)]



many simple quantum gates

 $|\psi_{\text{output}}\rangle = \dots \hat{U}_{z}(\gamma_{2})\hat{U}_{x}(\beta_{2})\hat{U}_{z}(\gamma_{1})\hat{U}_{x}(\beta_{1})|\psi_{0}\rangle$



Glen Bigan Mbeng

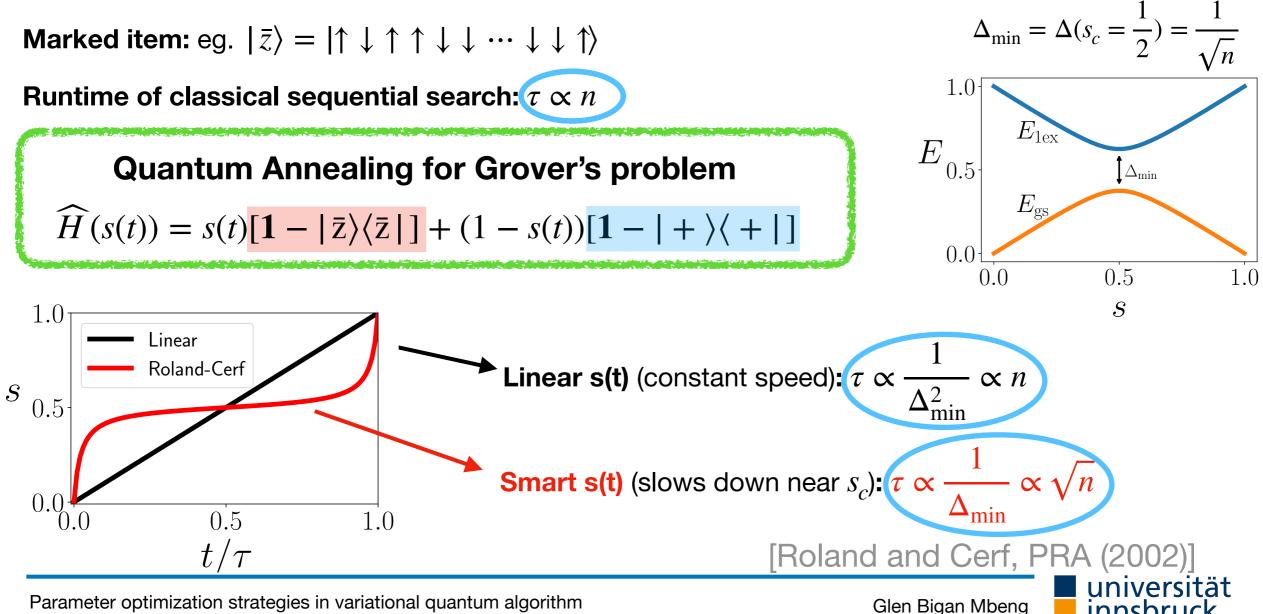
universität

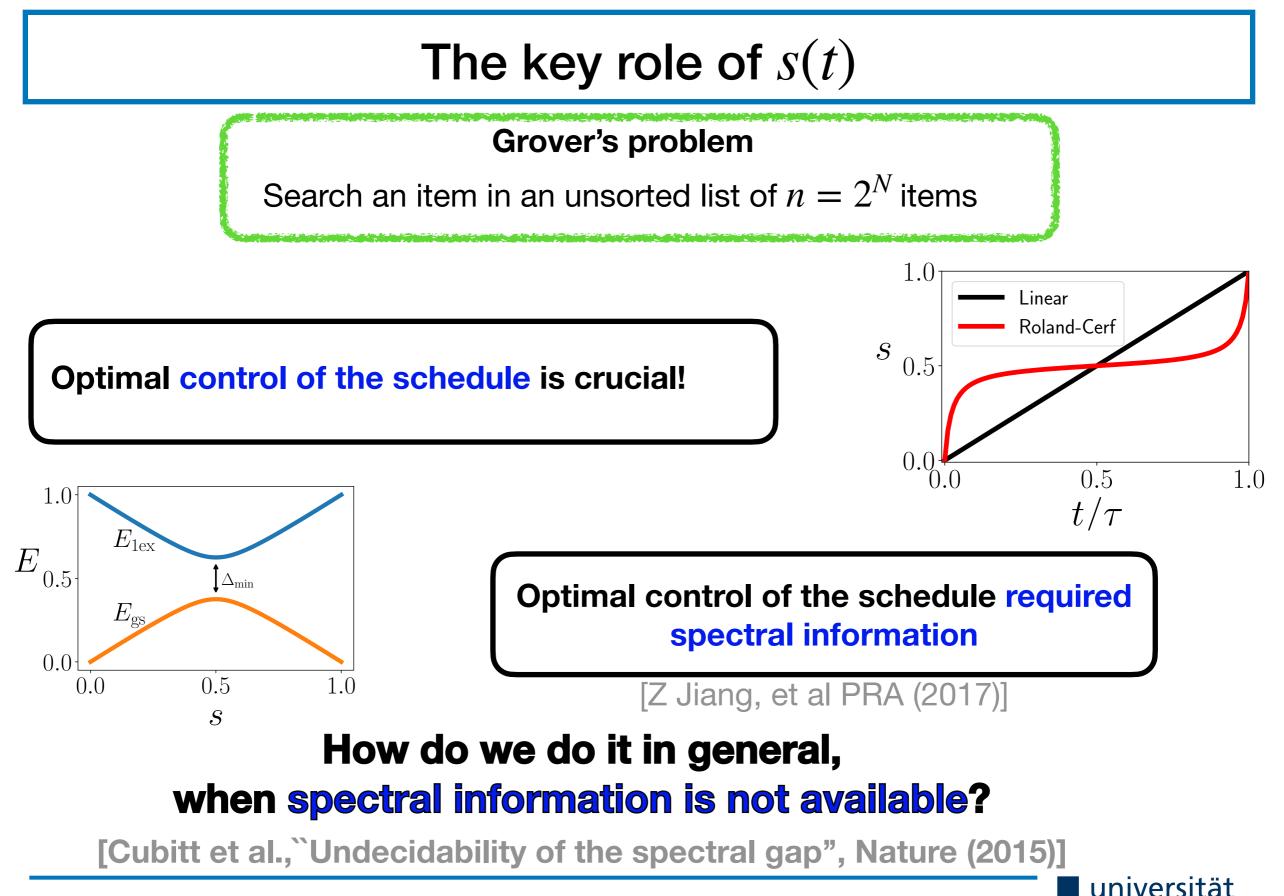
Example: quantum search

Grover's problem

Search an item in an unsorted list of $n = 2^N$ items

Database: binary strings (classical spin configurations) of length N

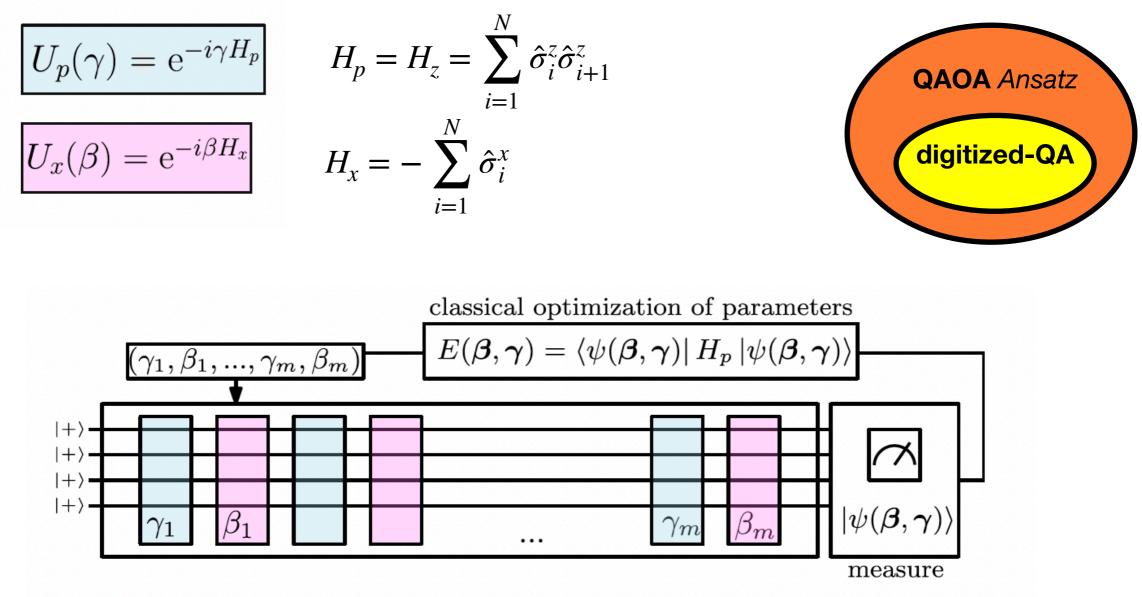




Quantum Approximate Optimization

Quantum approximate optimization algorithm

[E. Farhi, *et al*, arXiv:1411.4028 (2014)] [Blekos, et al Phys. Rep. (2024)]



Glen Bigan Mbeng

universität

innsbruck

Barren plateaus in quantum neural networks

ARTICLE

DOI: 10.1038/s41467-018-07090-4 OPEN

Barren plateaus in quantum neural network training landscapes

Jarrod R. McClean¹, Sergio Boixo ¹, Vadim N. Smelyanskiy¹, Ryan Babbush¹ & Hartmut Neven¹

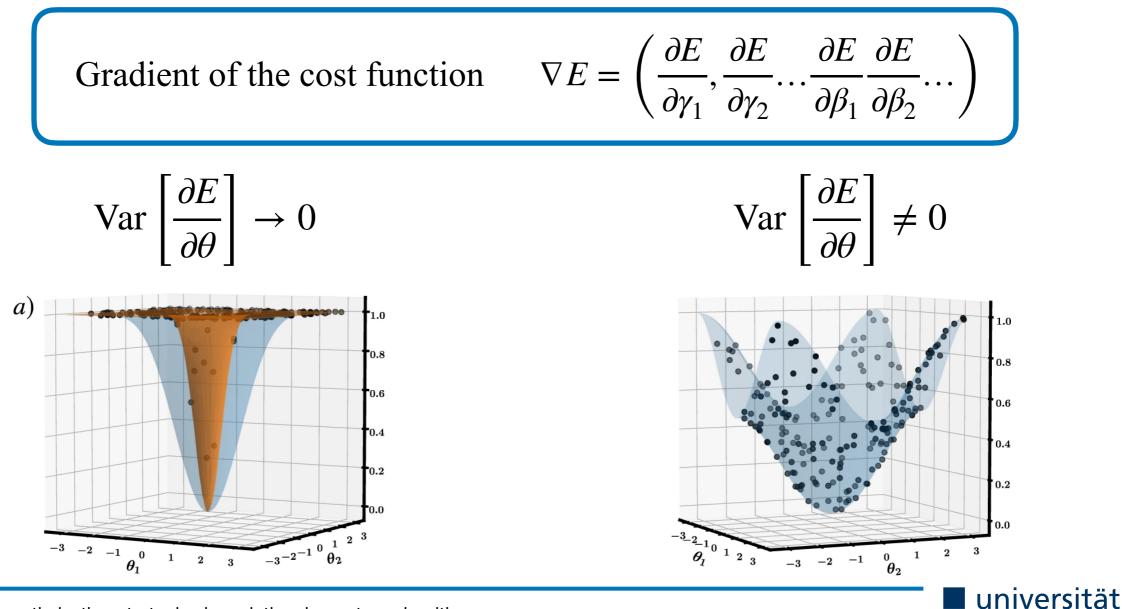
ARTICLE

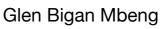
Check for updates

https://doi.org/10.1038/s41467-021-21728-w OPEN

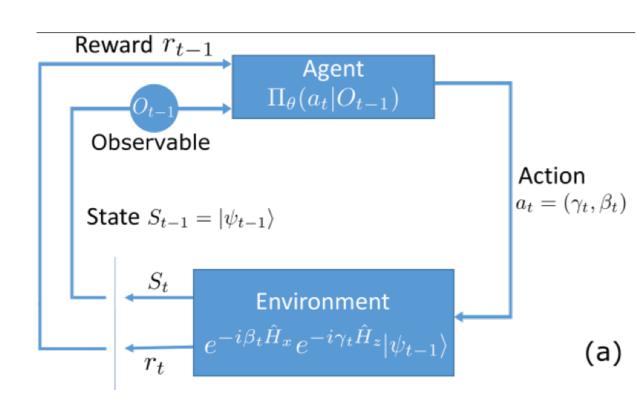
Cost function dependent barren plateaus in shallow parametrized quantum circuits

M. Cerezo ^[0] ^{1,2⊠}, Akira Sone^{1,2}, Tyler Volkoff¹, Lukasz Cincio¹ & Patrick J. Coles^{1⊠}





QAOA as Markov decision process



[Wauters, et al., Phys. Rev. Res. (2020)]

Proximal Policy Optimization (PPO)

RL library: <u>https://spinningup.openai.com</u>

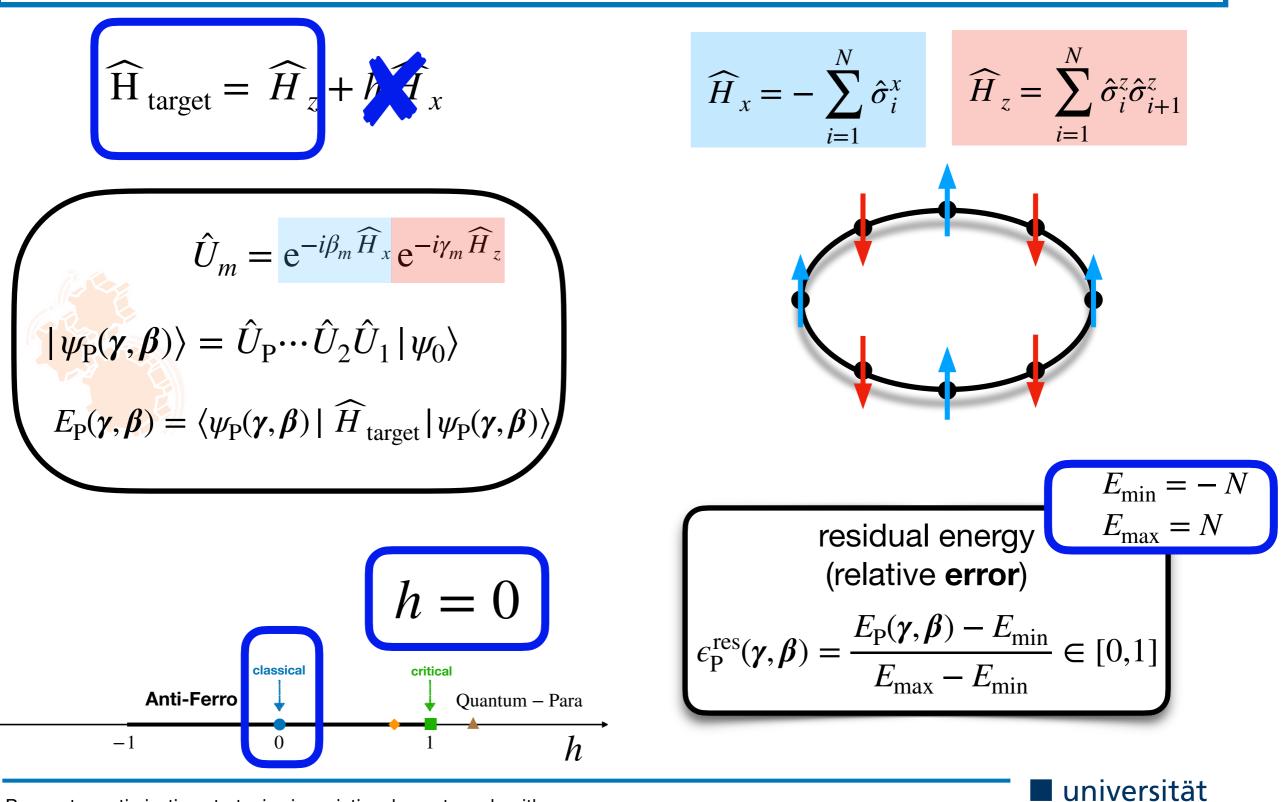
Quantum env: https://github.com/mwauters92/QuantumRL

Two Observables $O^{(z)} = \langle \psi_t | \widehat{H}_z | \psi_t \rangle$ $O^{(x)} = \langle \psi_t | \widehat{H}_x | \psi_t \rangle$ Require multiple quantum
measurements!

universität

innsbruck

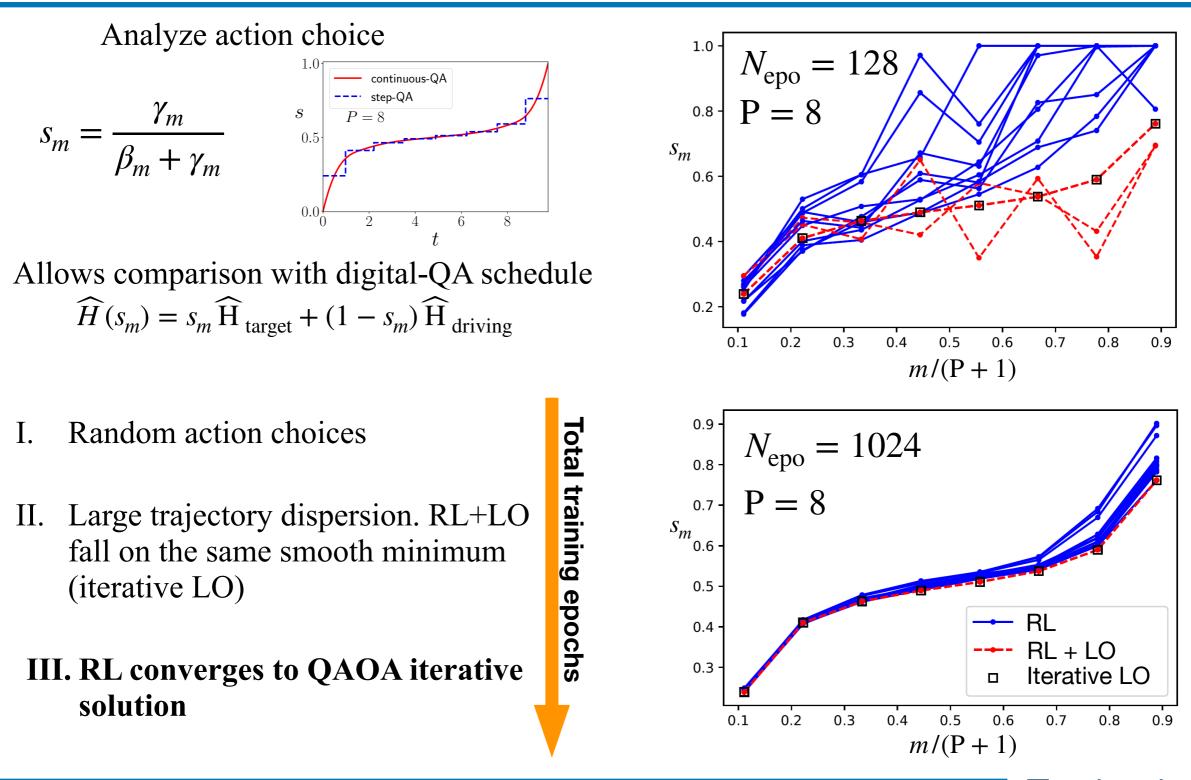
Quantum Ising Chain/Ring of disagrees



Parameter optimization strategies in variational quantum algorithm

innsbruck

Translationally invariant Ising Chain



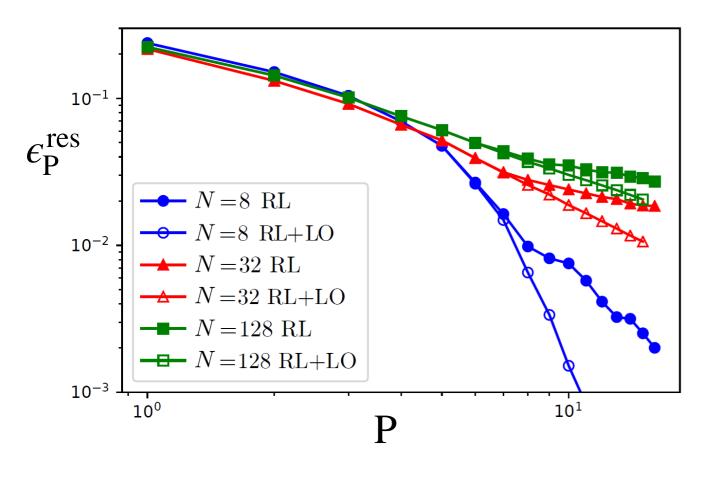
Glen Bigan Mbeng

universität

Random Ising Chain

$$\widehat{H}_{z} = \sum_{i=1}^{N} J_{i} \widehat{\sigma}_{i}^{z} \widehat{\sigma}_{i+1}^{z}$$

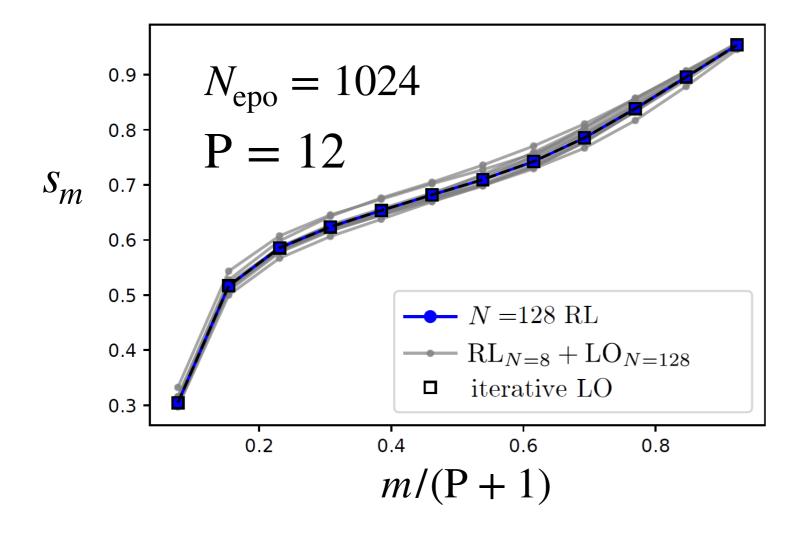
 J_i Uniformly disturbuted in [0,1] Makes the problem harder



Same phenomenology of uniform TFIM: Local optimization leads to lower energy for P > 6

Open issues:
No analytical result
Is solution optimal?
Better than QA?

Random Ising Chain (transferability)



III. RL converges to QAOA iterative solution

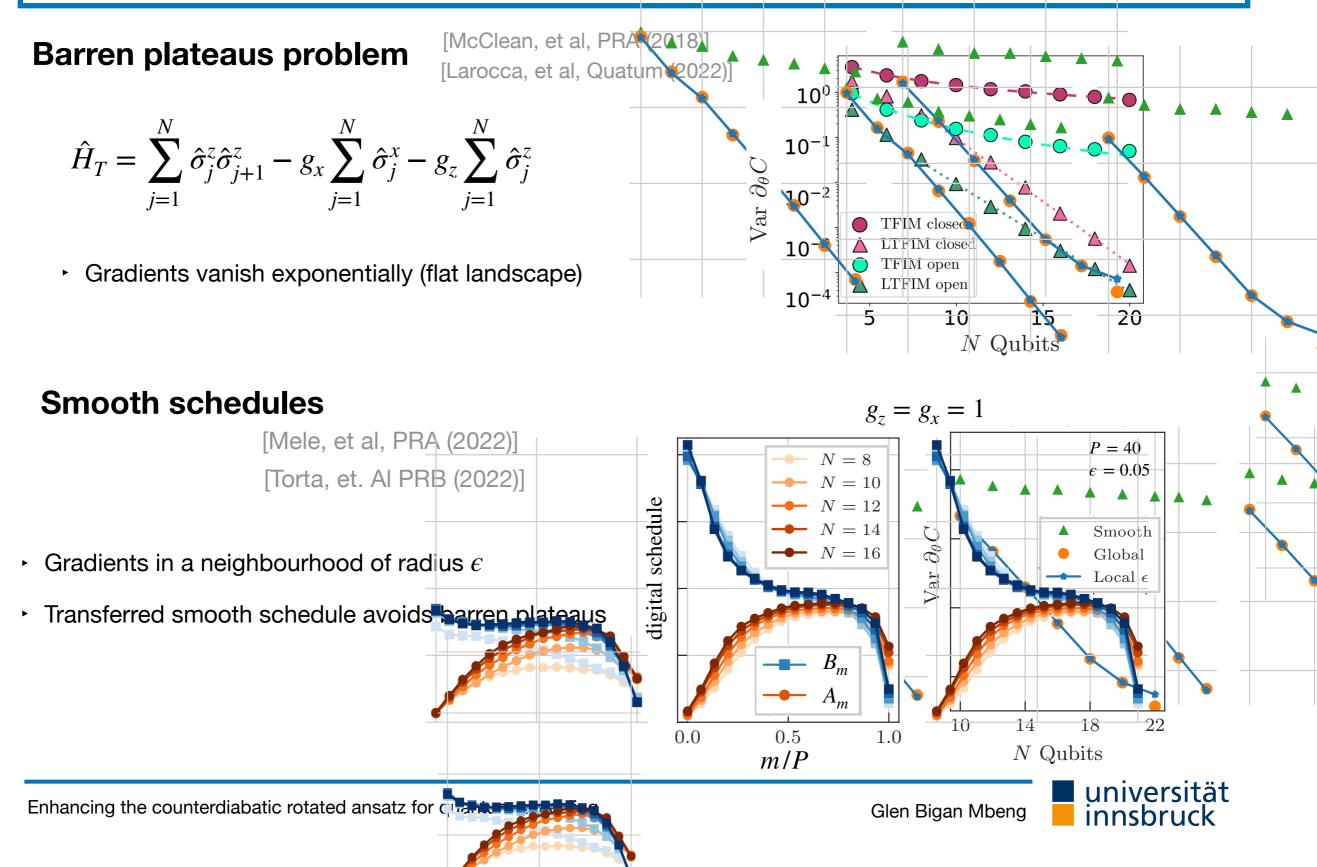
Policy transferability:

- I. Train a small system (N = 8) on single disorder instance
- II. Get approximate solution $(\boldsymbol{\gamma}^{\star}, \boldsymbol{\beta}^{\star})_{N=8}$
- III. Use $(\gamma^{\star}, \beta^{\star})_{N=8}$ to initialize a local optimization on larger system (N = 128)

Reduces used quantum resources

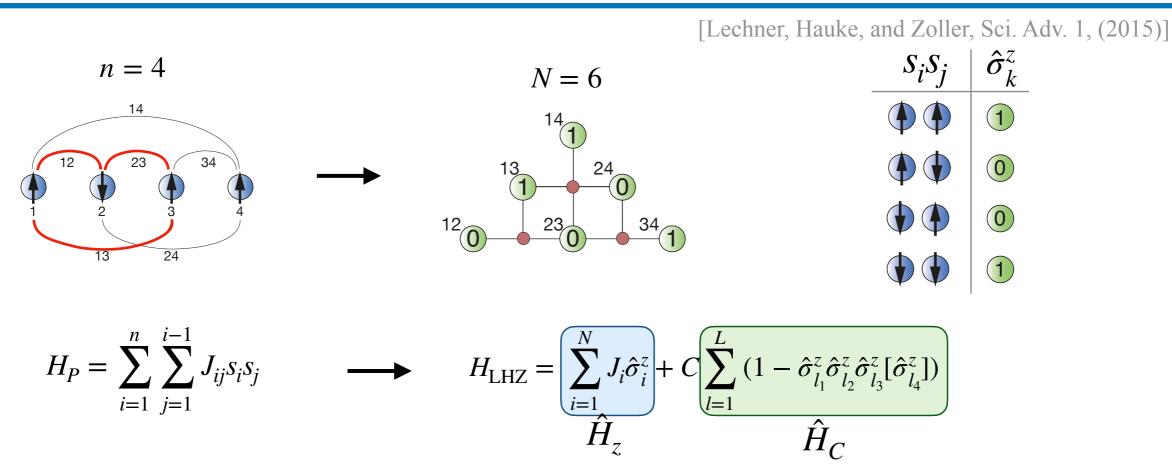
universität

Construction of digitized-QA schedules



Hardware challenge: Connectivity

Parity Architecture

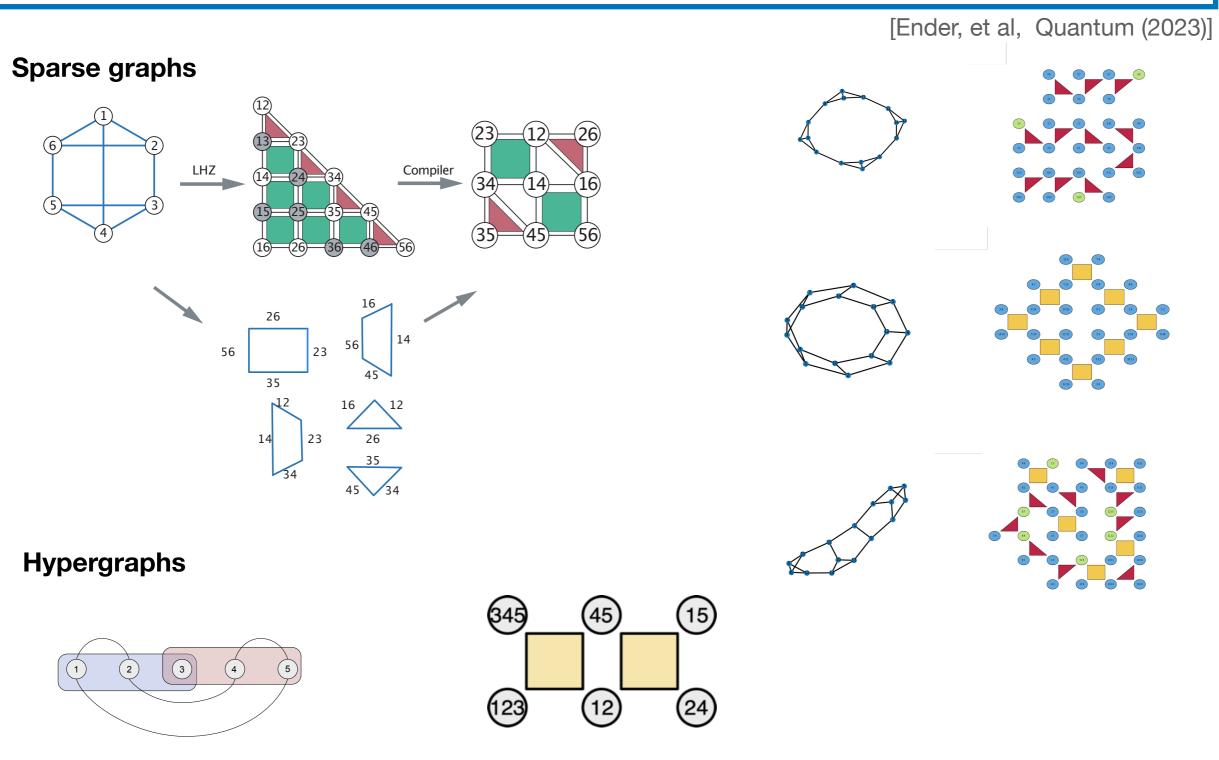


- The LHZ architecture maps an all-to-all connected spin model to a spin model with only quasi-local interactions.
- The physical qubits encode the parity of the logical qubits.
- No long-range interactions but only local 3- or 4-body couplings are necessary.
- The parity architecture requires nearestneighbour interactions on a square lattice, regardless of the qubit platform.

universität

innsbruck

Parity compilation



Parity based QAOA

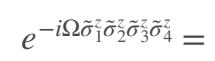
[Lechner, IEEE Trans. Quantum Eng. (2020)] [Fellner, et al., PRL (2022)] [Ender, et al. arXiv (2021)]

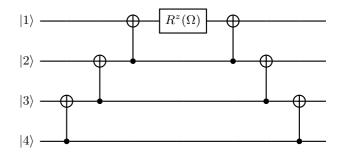
Parity QAOA ansatz:

$$|\psi(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\Omega})\rangle = \tilde{U}_{x}(\beta_{p})\tilde{U}_{P}(\boldsymbol{\gamma}_{p})\tilde{U}_{c}(\boldsymbol{\Omega}_{p}) \cdots \tilde{U}_{x}(\beta_{1})\hat{U}_{P}(\boldsymbol{\gamma}_{1})\tilde{U}_{c}(\boldsymbol{\Omega}_{1})|\psi_{0}\rangle$$

- Fully parallelizable
- Generalisation to k-body terms
- Uses fewer CNOT gates
- Universal quantum computing

4-qubit gates



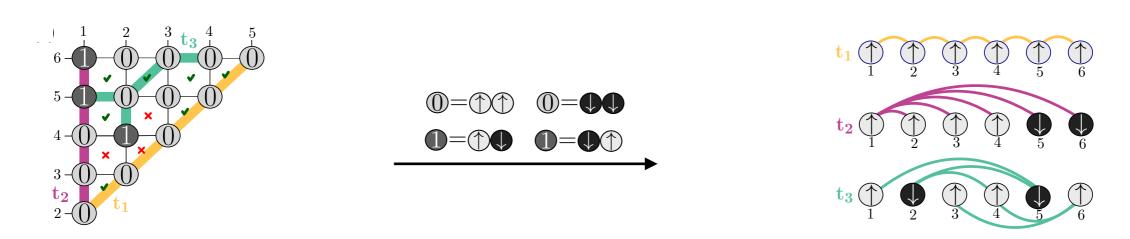


$$\begin{split} \tilde{U}_c(\gamma) &= e^{-i\Omega \tilde{H}_c} \ \tilde{U}_p(\gamma) &= e^{-i\gamma \tilde{H}_P} \end{split}$$

 $\tilde{U}_x(\beta) = \prod e^{-i\beta\tilde{\sigma}_j^x}$

universität innsbruck

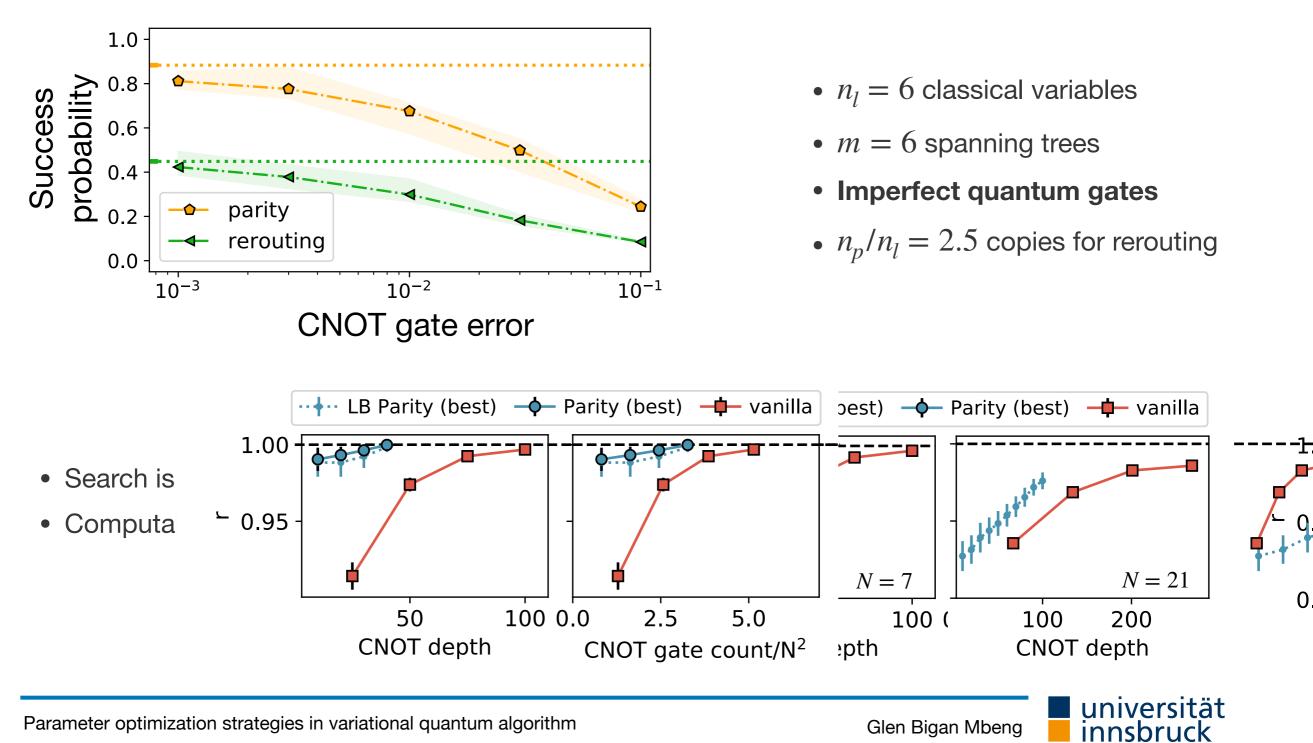
Decoding step: high chance of measuring invalid states



Glen Bigan Mbeng

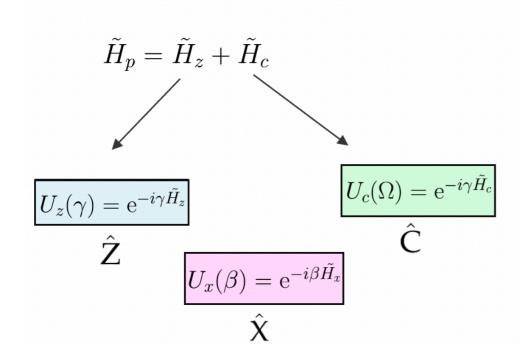
Performance of parity QAOA

[Weidinger, et al PRA 2023] [Weidinger, et al arXiv 2024]

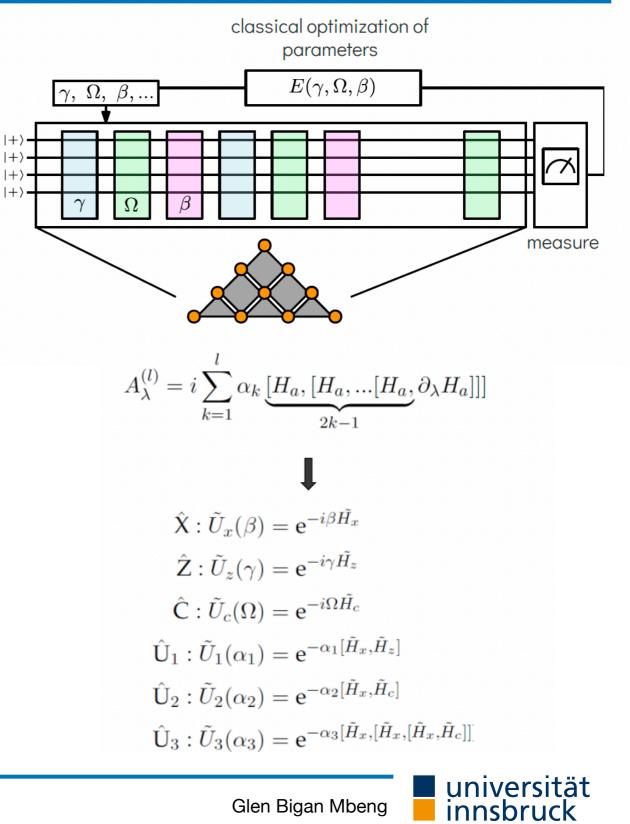


Glen Bigan Mbeng

Gate sequence



What is the optimal gate sequence?

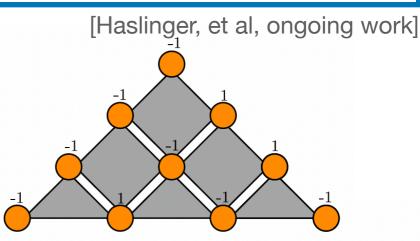


Glen Bigan Mbeng

RL for gate sequences

Problem configuration:

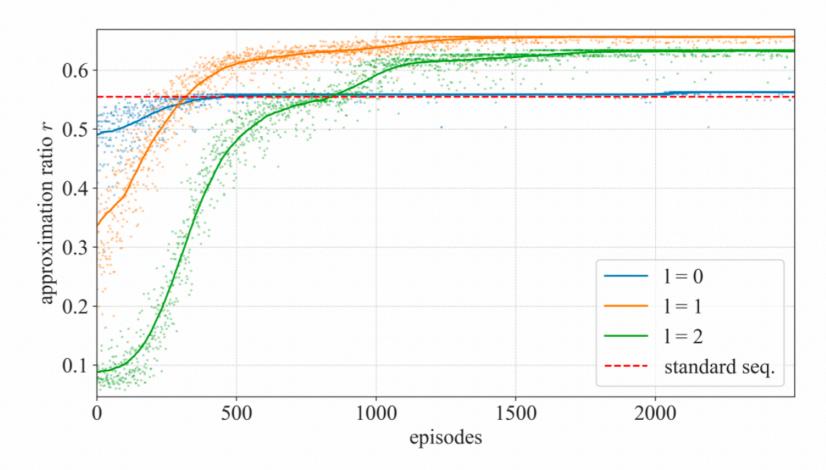
- 10 parity qubits
- Local fields $\tilde{J}_i \in \{-1, 1\}$



• Learning curves averaged over 10 agents for three gate pools

 \mid = 0: { $\hat{X}, \hat{Z}, \hat{C}$ }

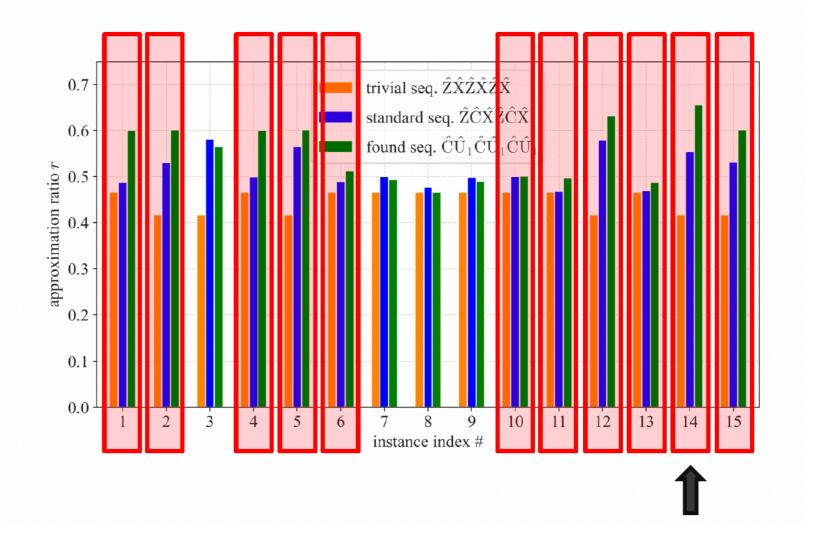
- $| = 1: \quad \{ \hat{X}, \hat{Z}, \hat{C}, \hat{U}_1, \hat{U}_2 \}$
- $|=2: \quad \{\hat{X},\hat{Z},\hat{C},\hat{U}_{1},\hat{U}_{2},\hat{U}_{3},\hat{U}_{4},\hat{U}_{5},\hat{U}_{6},\hat{U}_{7}\}$
- Max. gate length q = 6
- Energy of discovered sequence is stored



universität innsbruck

Performace across different istances

- 15 hard problem instances
- 100 random QAOA initializations
- → Found sequence outperforms standard sequence in 11 out of 15 problem instances



universität innsbruck

Summary

- The presence of barren plateaus hinders the performance of QAOA
- The reinforcement learning optimization converges to smooth optimal schedules, avoiding barren plateaus
- Few observables needed for the learning process
- Optimal gates and parameters can be transferred among different system sizes

