

ECE diagnostics for NTM detection and tracking in fusion reactors

- E. Alessi
- C. Sozzi, L. Figini, N. Rispoli

Institute for Plasma Science and Technology, CNR 20125 Milano, Italy

ICFDT – 7th International Conference on Frontier in Diagnostic Technologies

Introduction to Neo-classical Tearing Modes and their control

Focus on (Quasi-)In-Line control strategy => Oblique ECE line of sights (LOS)

Advantages/Issues of Oblique ECE LOS in DEMO-like reactor

Introduction of a novel diagnostic concept and control strategy.

Introduction

- In magnetically confined plasmas, a <u>tearing mode</u> breaks the magnetic surfaces forming a 'magnetic Island'. Islands reduce the confinement, and in some cases can lead to a disruption.
- Possibility to stabilize/suppress via localized EC heating power and current drive
- Alignment is critical:
 - Deposition far from instability has negligible effects
 - Deposition <u>near</u> the Island can partly stabilize
 - well aligned/overlapping can suddenly suppress it
- Need of RT Control of ECH/CD deposition

3 E. ALESSI | ICD FT 7 | 23/10/2024

ECH/CD and ECE systems in a DEMO-like reactor

- A DEMO-like reactor [M.Q. Tran FED 2022] will be provided of dedicated ECH/CD (@f=170 GHz) launchers for NTM control:
 - RT steerable antennas
 - Large toroidal angle of injection (current drive)
 - Launching point at z=1m above equatorial plane
- O1/X2 ECE radiometers installed in equatorial port
 - to align ECH/CD NTM antennas need RT evaluation of equilibrium reconstruction and of beam propagation
- Options for Island detection and tracking:
 - To equip ECH/CD launchers with collinear ECE radiometers (In-Line)
 - To install (shifted) additional RT steerable antennas equipped with ECE (Quasi-In-Line)
 - In both cases ECE diagnostics will have oblique LOS

In-Line strategy

- Alignment is based on $f_{ECH} f_{ECE,Island} \rightarrow 0$ [GHz]
- Robust control strategy based on measurements of f_{ECE,Island}: <u>detected Island position along ECE LOS</u>
- Collinear ECE shares same antenna with ECH source (In-Line): plasma volume emitting ECE (at f=f_{ECH}) is the same plasma volume would absorb the ECH/CD beam power injected from the antenna (reciprocity).
 - Need of FADIS technologies to separate emitted (µW) ECE and ECH/CD power (MW)

B. A. Hennen et al., PPCF 52 (2010) 104006, TEXTOR

Quasi-In-Line strategy

- Avoid the need of FADIS by exploiting toroidal symmetry
- Use of additional RT steerable antennas (parallel to ECH/CD ones) toroidally displaced and equipped with ECE.
 - Quasi-In-Line: Proof of principle demonstrated in TCV [N.Rispoli, FED 146 (2019) 666-670]

- Synchronous steering of ECE and of ECH/CD antennas
- ECH source firing
- When ECE sees f_{Island}~f_{ECH} Island is completely suppressed

[C.Sozzi, IAEA-FEC 2023], **TCV**

6

6

4

2

0 ء [

-2

-4

-6

Ob ECE

up: -5°

dn: +5°

0: nominal

Ea ECE

01. X2

۲a=3/2

q=2/1

R [m]¹⁰

12

Spatial Resolution of different ECE LOS in a DEMO-like reactor

 Simulations in DEMO-like with SPECE [D.Farina et al. AIP Conf Proc 988 2008] for ECE on equatorial LOS (O1, X2) and on Oblique LOS (O1) for I-L/Q-I-L control

> Oblique LOS almost tangential to rational surfaces => Improves resolution close to the rational surface:

smaller ($\partial \rho / \partial f_{ECE}$)

Reduced radial ECE channel width ($\Delta \rho_p$)

NTM detection by cross-correlation on different ECE LOS

- Improved resolution has an impact on the Island detection
- Simulated perturbed/unperturbed profiles to provide "synthetic" ECE channels in DEMOlike [N. Rispoli et al. FED (2017) 628-631]
- Applied Berrino Detection algorithm to synthetic data
- Island localization based on cross-correlations $P_{i,j}$ of ECE (<0, π -jump)

NTM detection by cross-correlation on different ECE LOS

- Equatorial ECE show long detection times of small Islands not compatible (~1s) with control purposes
- Oblique ECE results in earlier detection

- NTM detection/localization codes from ECE are developed for equatorial LOS
- Patterns of T_e fluctuations at ECE frequencies are different if seen from an Oblique LOS
- Pattern depends on the number (0,1,2) of intersection with the m/n rational surface

- NTM detection/localization codes from ECE are developed for equatorial LOS
- Patterns of T_e fluctuations at ECE frequencies are different if seen from an Oblique LOS
- Pattern depends on the number (0,1,2) of intersection with the m/n rational surface

No intersections: No localization of the Island No information for steering the launcher

- NTM detection/localization codes from ECE are developed for equatorial LOS
- Patterns of T_e fluctuations at ECE frequencies are different if seen from an Oblique LOS
- Pattern depends on the number (0,1,2) of intersection with the m/n rational surface

Two intersections: Double localization of the Island Typical condition is $f_{ECE, HFS} \ge f_{ECH} \ge f_{ECE, LFS}$

No clear indication to move antenna outward or inward

- NTM detection/localization codes from ECE are developed for equatorial LOS
- Patterns of T_e fluctuations at ECE frequencies are different if seen from an Oblique LOS
- Pattern depends on the number (0,1,2) of intersection with the m/n rational surface

One intersection: Similar to the case of Equatorial LOS

- NTM detection/localization codes from ECE are developed for equatorial LOS
- Patterns of T_e fluctuations at ECE frequencies are different if seen from an Oblique LOS
- Pattern depends on the number (0,1,2) of intersection with the m/n rational surface

A moving antenna will see different conditions when aligning to the Island

=> in some cases, fall in conditions not providing clear information for alignment

Oblique ECE Imaging for NTM Control (OEINC)

- RT steerable ECE antennas (Q-I-L) can be replaced by a set of fixed antennas (OEINC) looking at different plasma volumes –possibly integrated in a single mechanical component-
 - Reduce moving parts faced to plasma
 - Avoid localization problems
- This Imaging diagnostic must cover the steering range of the ECH/CD launcher
- From OEINC information, it is possible to solve an Inverse problem and directly estimate the optimum angle for ECH/CD antenna alignment.
- In a DEMO-like reactor, Imaging with 8 ECE LOS fits the resolution requirements under noisy detection. [N. Rispoli et al., 33th SOFT being submitted to FED]

SUMMARY

In a DEMO-like reactor, magnetic measurements (fast, and equilibrium) can suffer of high disturbances, and complex evaluation in RT (Equilibrium Reconstruction, Beam propagation) may result in low resolution => use alternative diagnostics (e.g. *ECE* or SXR).

- *Oblique LOS ECE* are more sensitive than equatorial to magnetic Island and can ensure *faster reaction*.
- Technical difficulties of integration of ECE in ECH antenna (In-Line) can be avoided using toroidally displaced RT steerable ECE antennas (Quasi-In-Line).
- Significant reduction of moving parts faced to plasma with adoption of an Imaging diagnostic
- An Oblique ECE Imaging diagnostics (OEINC) made up of fixed antennas can replace the RT ECE antennas
 - a large impact on the control strategy, which will become more robust and capable of performing a faster ECH/CD alignment.

Thank you all for attention!

BACK-UP SLIDES

Performances with OEINC

- In a DEMO-like reactor, a limited number (8) of los can provide sufficient resolution for NTM control purposes.
- This leads to faster alignment with respect to Q-I-L, I-L solutions.
- Improvements on redundance, robustness and reliability

N. Rispoli et al., 33th SOFT being submitted to FED

ECH/CD and ECE systems in a DEMO-like reactor

- A DEMO-like reactor [M.Q. Tran FED 2022] will be provided of dedicated ECH/CD (@f=170 GHz) launchers for NTM control:
 - Relevant toroidal angle of injection (current drive)
 - Launching point at z=1m above equatorial plane
- O1/X2 ECE radiometers installed in equatorial port -> RT equilibrium reconstruction and beam propagation codes to align ECH/CD NTM antennas
- Simple and robust control strategies based on In-Line principle:
 - To equip ECH/CD launchers with radiometers
 - To install additional RT steerable antennas Quasi-I-L
- Oblique los ECE

Parameters	Values
R ₀ , a [m]	8.94, 2.88
A, <i>k</i> 95, ∂95, q95	3.1, 1.65, 0.33, 3.94
I _P [MA], B _T [T]	18.3, 5.74
<t<sub>e> [keV], <n<sub>e> [10¹⁹m⁻³]</n<sub></t<sub>	11.3, 8.06
ECH/CD (bulk, NTM) [MW]	50, 30
NBI, ICRF [MW]	50, 30-50
P _{Fus} , P _{el, net} [MW]	2000, 500

Further developments of OEINC with Machine Learning

Start

- OEINC opens to the possibility of developing Deep Learning algorithms to provide detailed information about the Island: (relative) position, width, rotation frequency and phase.
- ECW antenna is aligned on the basis of the OEINC estimate. Leading to a finite alignment error (*Steering*), but ensuring good efficiency

The finite resolution of the alignment, whose effect on the stabilization should be evaluated, can be solved adding a *Tracking* state in the control logic: once ECW is ON, alignment is optimized from the feedback on the Island width.

Control Strategies for ECH alignment

Feedback on	Diagnostics	Real Time Codes	Comments	Burning plasmas
W (Island width)	Mirnov	Fluctuation amplitude	Evaluate the Island response to ECH (on)	Reliability of Mirnov Power consuming
Radial position $(\rho_{ECH} - \rho_{Island})$	Mirnov, Equatorial ECE	Equilibrium Reconstruction ECH Beam propagation Island radial localization and (m,n) identification ECH deposition localization	RT codes required for evaluating ρ_{ECH} And properly drive ECH antenna (ρ -> α)	Reliability of Mirnov Reliability of RT codes
Relative position $(f_{ECH} - f_{Island})$	Oblique ECE (In- Line)	Island localization along the ECE los	ECH antenna equipped with dedicated radiometer	Development of devices to separate emitted plasma radiation from ECH back reflected

Control Strategies. Feedback on W (A)

- Minimal control system based on the Island response to ECW (on)
- Diagnostics to estimate A amplitude fluctuations (Island width, W)

- Power consuming method (ECW on
- Amplitude from in-vessel magnetic coils: subject to hard environment => Develop alternative diagnostics: e.g. SVD on equatorial ECE data

Control Strategies. Feedback on p_{ECW} - p_{Island}

E. Alessi et al., NIMA 720 (2013) 186-188

Complex control strategy needs measurements and/or estimates of ECH absorbing plasma volume (ρ_{ECW}) and of Island position (ρ_{Island}):

- Main diagnostics are fast Magnetic and Equatorial ECE
- Equilibrium reconstruction can provide an estimate of ρ_{Island} and is necessary to aim ECH antenna from localization along an equatorial line of sight (los)
- RT ECW beam propagation to estimate p_{ECW} (direct RT measurement not demonstrated yet)
- Bayesian assimilation of both actual measurements and of synthetic estimates.

In Burning plasmas:

- Fast magnetics may have low reliability
- RT codes can fall in error/ have low resolution

Control Strategies. Feedback on f_{ECW} - f_{Island}

- ECE shares same antenna with ECW source (In-Line)
- Exploit (quasi-)reciprocity between plasma emitted ECE and injected ECW beam power
- More robust control strategy based on measurements of f_{Island}: detected Island position along ECE los

In-Line: Technologies for separating emitted (μW) ECE and injected (MW) ECW

- worsening SNR [H. van der Brand NF 2019], may require further reference signal (Magnetic, SXR)
- ECW antennas dedicated to NTM stabilization are not equatorial
- Which los is better to detect NTMs?

25 E. ALESSI | ICD FT 7 | 23/10/2024

Quasi-In-Line ECE for NTM control

- To exploit toroidal symmetry to reduce back-reflection helps avoiding FADIS
- Two similar antennas toroidally displaced, one for ECE and one for ECH
- In-line alignment control applied to the ECE (and ECH) antenna
- Proof of principle demonstrated in **TCV** [N.Rispoli, FED 2019]

Predefined angular scan stopped when $f_{ECH} - f_{Island} = 0$

Test with ECH/ECE antennas linked and ECH on NTM is suppressed when $f_{ECH} - f_{Island,ECE} = 0$ [C.Sozzi, IAEA-FEC 2023]

Oblique ECE Imaging for NTM Control (OEINC)

- RT steerable ECE antennas (Q-I-L) can be replaced by a set of fixed antennas (OEINC) looking at different plasma volumes –possibly integrated in a single mechanical component-
 - Reduce moving parts faced to plasma
 - Avoid localization problems
- This Imaging diagnostic must cover the steering range of the ECH/CD launcher
- From OEINC information, it is possible to **solve an Inverse problem** and directly estimate the optimum angle for ECH/CD antenna alignment.
- In a DEMO-like reactor, Imaging with 8 ECE LOS fits the resolution requirements. It results in faster detection and ECH/CD alignment [N. Rispoli et al., 33th SOFT being submitted to FED]

Oblique ECE Imaging for NTM Control (OEINC)

- RT steerable ECE antennas (Q-I-L) can be replaced by a set of fixed antennas (OEINC) looking at different plasma volumes –possibly integrated in a single mechanical component-
 - Reduce moving parts faced to plasma
 - Avoid localization problems
- This Imaging diagnostic must cover the steering range of the ECH/CD launcher
- From OEINC information, it is possible to solve an Inverse problem and directly estimate the optimum angle for ECH/CD antenna alignment.
- In a DEMO-like reactor, Imaging with 8 ECE LOS fits the resolution requirements. [N. Rispoli et al., 33th SOFT being submitted to FED]

