New insights on the D(T, ⁵He)γ reaction and prospects for D-T fusion power measurements at ITER

G. Marcer^{1,2}, G. Croci², F. Scioscioli^{2,1}, A. Dal Molin¹, M. Nocente^{2,1}, M. Rebai¹, D. Rigamonti¹,

S. Colombi², B. Coriton³, A. Kovalev³, M. Dalla Rosa², G. Gorini², E. Panontin⁴, E. Perelli Cippo¹,

O. Putignano¹, J. Scionti¹ and M. Tardocchi¹

¹Institute for Plasma Science and Technology, CNR, Milan, Italy ²Department of Physics, UNIMIB Milan, Italy ³Diagnostic Program, ITER Organization, Saint Paul-lez-Durance, France ⁴Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts, USA

Outline

Benefits for fusion power measurements

- New insights on the D(T,⁵He)γ reaction (at JET)
- Benefits for fusion power measurements
- Fusion power measurements with gammas at ITER

- New insights on the D(T,⁵He)γ reaction (at JET)
- Benefits for fusion power measurements
- Fusion power measurements with gammas at ITER
- Conclusions

The DT reaction has 2 possible channels:

D(T,⁵He)y reaction: spectral measurement

D(T,⁵He)γ reaction: spectral measurement

Issues: dead time, pile-up, etc.

D(T,⁵He)γ reaction: spectral measurement

R-matrix theory: predicts spectral shapes

Issues: dead time, pile-up, etc.

D(T,⁵He)γ reaction: spectral measurement

Issues: dead time, pile-up, etc.

$$\mathsf{BR}_{\gamma/n} = \frac{\mathsf{Y}_{\gamma}}{\mathsf{Y}_{n}}$$

ICFDT7 - 21-23/10/2024 - Frascati

G. Marcer - UNIMIB, ISTP-CNR

D(T,⁵He)γ reaction: probability

absolute measurement

 \rightarrow no need to be cross-calibrated

absolute measurement
→ no need to be cross-calibrated

neutron independent

→ benchmark of standard method

absolute measurement

- → no need to be cross-calibrated
- neutron independent
 - → benchmark of standard method
 - easier gamma transport
 - \rightarrow no time-consuming in-vessel calibrations

absolute measurement

- → no need to be cross-calibrated
- neutron independent
 - → benchmark of standard method
 - easier gamma transport
 - \rightarrow no time-consuming in-vessel calibrations

second method for ITER?

- 3 detectors
- coplanar, radial LoS
- LaBr₃

- 3 detectors
- coplanar, radial LoS

Fusion power from the DT-y emission!

- 3 detectors
- coplanar, radial LoS

Fusion power from the DT-y emission!

ITER requirements:

- $Y_n \in (10^{18} \text{ n/s} 10^{20} \text{ n/s})$
- Δt = 1s
- uncertainty: 10%

- 3 detectors
- coplanar, radial LoS
- LaBr₃

Fusion power from the DT-y emission!

combined detector improves accuracy

ITER requirements:

- $Y_n \in (10^{18} \text{ n/s} 10^{20} \text{ n/s})$
- Δt = 1s
- uncertainty: 10%

ITER requirements:

- $Y_n \in (10^{18} n/s 10^{20} n/s)$
- $\Delta t = 1s$
- uncertainty: 10%

- 3 detectors
- coplanar, radial LoS
- LaBr₃

Fusion power from the DT- γ emission!

combined detector improves accuracy

ITER requirements:

- $Y_n \in (10^{18} n/s 10^{20} n/s)$
- $\Delta t = 1s$
- uncertainty: 10%

- 3 detectors
- coplanar, radial LoS
- LaBr₃

Fusion power from the DT-y emission!

combined detector improves accuracy

D-T fusion reaction also has two radiative branches,

- D-T fusion reaction also has two radiative branches,
- which can be exploited for fusion power measurements.

- D-T fusion reaction also has two radiative branches,
- which can be exploited for fusion power measurements.
- This was done at JET during DTE2 and DTE3,

- D-T fusion reaction also has two radiative branches,
- which can be exploited for fusion power measurements.
- This was done at JET during DTE2 and DTE3,
- allowing to get new inshights on the reaction itself.

- D-T fusion reaction also has two radiative branches,
- which can be exploited for fusion power measurements.
- This was done at JET during DTE2 and DTE3,
- allowing to get new inshights on the reaction itself.
- At ITER, this method will allow to measure the fusion power

- D-T fusion reaction also has two radiative branches,
- which can be exploited for fusion power measurements.
- This was done at JET during DTE2 and DTE3,
- allowing to get new inshights on the reaction itself.
- At ITER, this method will allow to measure the fusion power
- within the required operational range.

