

Initial Design of a Real-Time and an Intershot **Bolometric Data Exploitation Strategy for DTT**

<u>E. Peluso</u>^{1,2}, G. M. Apruzzese¹, A. Belpane³, S. Palomba⁴, L. Senni⁵, E. Giovannozzi¹, V. D'Agostino², T. Craciunescu⁶, M. Gelfusa², P. Gaudio² and L. Boncagni¹

⁽¹⁾ ENEA, Nuclear Department, C.R. ENEA-Frascati, Via E. Fermi 45, 00044, Frascati (RM), Italy ⁽²⁾ Department of Industrial Engineering, University of Rome, Via del Politecnico 1, 00133, Rome(RM), Italy ⁽³⁾Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati, Padova, 35127, Italy, ⁽⁴⁾ DTT S.C.a r.l., Via E. Fermi 45, I-00044, Frascati (RM), Italy ⁽⁵⁾ National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania, ⁽⁵⁾ CNR - Institute for applied mathematics 'Mauro Picone' (IAC) Via dei Taurini, 19, 00185 - Roma – Italy

emmanuele.peluso@enea.it; emmanuele.peluso@uniroma2.it

Background:

The Divertor Tokamak Test (DTT) Facility is an experiment under construction at the ENEA Research Centre in Frascati; its main mission is to test the power extraction strategies for the first nuclear fusion power plant [1].

Currently, a Phase1, a Phase2 and a Phase3 are planned, with different implemented diagnostics and with increased external heating (~19MW, ~28MW and ~45MW respectively[2]).

DT	Γ	
	R [m]	2.19
	a [m]	0.70
	I _P [MA]	5.5
	B _T [T]	5.85
	P _{tot} [MW]	45
	Pulse	
	length	100

Estimation of *P_{rad}* from ROIs for RT feedback control (*B objective*)

The RT feedback control of the radiation pattern for prevention is a delicate matter. In seeding experiments, an unstable X-point radiator could lead to a Multifaceted Asymmetric Radiation From the Edge (MARFE) [9] and then to a so-called density limit disruption. Another example of a possible perturbation pathway would be the growth and dynamics of Tearing Modes (TM), which have recently been linked to impurity fluxes and their accumulation[10][11].

A wise approach would be to monitor not only the total radiated power, but also the power radiated from different regions of the device. A fast, but approximate method can be found in [12]. Here it has been adapted for DTT by defining the following closed system composed of eight initial ROIs.

A preliminary conceptual design of the bolometric diagnostic, requiring 216 lines of sight (LoS), has been completed [3]. The bolometers will be housed in a pinhole box support unit [4]; the thermo-mechanical analysis can be found in [5] instead. Synthetic profiles (phantoms) were considered to validate the overall layout by adapting an expectation maximisation algorithm for a maximum likelihood (ML) approach[6].

For Single Null (SN), Flat-Top, Full Power Scenario $T_{\rho} \sim 10 \ keV$ $n_e \sim 2 \cdot 10^{20} \ m^{-3}$

Main features of the ML approach implemented

- The variance associated with the reconstructed emissivity and hence the uncertainties in the derived quantities can be obtained [7];
- an anisotropic smoothing has been implemented that can take into account differently oriented directional derivatives for smoothing[8];
- the width of each LoS is considered and both the etendue and the contribution of each truncated pyramidal voxel are estimated[6].

Objectives of this contribution

Describe the designs or current state of the art of strategies for estimating:

- A) the radiated power of the plasma, P_{rad} , using directly arrays of Line Integrals (L.I) for a Real Time (RT) implementation;
- P_{rad} in different regions of the plasma, using Region of Interest (ROIs) in RT for B) feedback control;
- tomograms from a ML approach during the inter-shot phase to provide more accurate **C**) estimates of P_{rad} in different locations of the device as well as radiation profiles

Measurements	ROIs #			
V1	1,4			
V2	2,5,7,8			
V3	3,6			
H1	1,2,3			
H2	4,5,6,7,8			
P4	7			
P4D	8			
B1	1,2,3,4,5,6,7,8			

The matrix G contains the imposed geometric weights representing the fraction of the poloidal areas for each ROI. Using a non-negative least-squares fit, the radiated power $P_{ROI1,...,8}$ in each region can be estimated in RT.

*P*_{rad} from ML tomograms for intershot analysis (*C objective*)

The error-free estimation of the ML code can in principle run in RT, as it is based on

Estimation of P_{rad} from arrays of L.I in RT (A objective) Starting from the absorbed power from a detector, P_m , the L.I or I_m , can be derived for a bolometer *m*, i.e. :

$$P_m = \sum_{p}^{\# voxel} \left(\varepsilon_p dV_p d\Omega_p \right)_m = \frac{E_m}{4\pi} I_m \Rightarrow I_m = \sum_{p}^{\# voxel} H_{mp} \varepsilon_p = \int \varepsilon(r,\theta) dl_m$$

where ε is the synthetic emissivity profile described by a phantom; p stands for a truncated pyramidal voxel, seen by the detector with etendue E, with a volume dV and emitting by an infinitesimal solid angle $d\Omega$ towards the bolometer. The radiated power P_i inside the vacuum vessel can be derived from an array of q bolometers (i.e. P1, P2 or P3) by a weighted sum of the L.I:

$$P_j = 2\pi R_0 \sum_{q}^{\# L.I.} S_{qj} \left(\frac{I_{qj}}{L_{qj}}\right) c_j$$

Where the length of each LoS is L and the poloidal section of the LoS is S

standard low-dimensional matrix computations [13]; however, such an option could in principle lead to a possible misuse of the results.

A better approach would be to optimise the algorithm and implement a layered code, including a GUI, for inter-shot analysis aimed at providing tomograms and the derived quantities with their uncertainties from the ML approach.

Efforts must be made to:

hantom	M		R[m] R		[m] R[m]		Arra	iy P3	P1 and P2		P1,P2 and P3	
P _{rad} [MW]	P _{rad} [MW]	€ ‰	P _{rad} [MW]	$oldsymbol{\delta}_{\%}$	P _{rad} [MW]	δ %	P _{rad} [MW]	δ %	P _{rad} [MW]	$oldsymbol{\delta}_{\%}$	P _{rad} [MW]	δ %
13.44	13.43	11.0	12.96	-3.92	13.72	1.86	14.18	5.06	13.34	-0.94	13.62	1.14
14.63	14.62	10.0	14.49	-0.86	14.96	2.26	15.18	3.69	14.73	0.72	14.87	1.73
13.93	13.91	9.6	13.32	-4.55	14.00	0.54	14.49	3.87	13.66	-1.95	13.93	0.070
15.13	15.15	8.5	14.79	-2.35	15.22	0.48	15.48	2.16	15.00	-0.91	15.16	0.12
16.72	16.41	3.2	18.59	11.72	15.62	-5.15	14.30	-14.77	17.10	4.02	16.17	-1.52
Where ϵ stands for the percentage error estimated using the ML approach from a set of												

a. obtain a consolidated set of weights (c_i) by studying more synthetic profiles; b. both study and further define a layout of the ROIs for RT, also taking into account a possible modification of the layout for Phase 1;

c. realise the described inter-shot analysis tool and build the actual interfaces with CODAS.

[1] F. Romanelli 2024 Nuclear Fusion. IOP Publishing on behalf of the IAEA [2] F. Crisanti, G. Giruzzi and P. Martin, 2024, DIVERTOR TOKAMAK TEST facility Research Plan [3]G. M. Apruzzese, submitted to 50th EPS Conference, Salamanca, Spain (08th-12th July 2024) [4] A. Belpane, ICFDT7, Frascati, Italy,(21st-28th October 2024) [5] V. D'Agostino 33rd SOFT, Dublin, Ireland (22nd -27th September 2024) [6] E. Peluso, 33rd SOFT, Dublin, Ireland (22nd -27th September 2024) [7] T. Craciunescu et al., 2018, Rev. Sci. Instrum. 89,053504, https://doi.org/10.1063/1.5027880 [8] T. Craciunescu et al, 2023 Phys. Scr. 98 125603 https://doi.org/10.1088/1402-4896/ad081e [9] M. Bernert et al. Nuclear Materials and Energy 34 (2023) 101376 [10] G. Pucella et al. Nucl. Fusion 61 (2021) 046020 (12pp) [11] S.Zeng et al., Nucl. Fusion 63 (2023) 046018 (12pp) [12] R. Rossi et al. Matter Radiat. Extremes 8, 046903 (2023) [13] H.H. Barrett, et al., I. Theory, Phys. Med. Biol. 39, 833–846 (1994). [14]E.Peluso et al, 2022, Plasma Phys. Control. Fusion 64 045013, https://doi.org/10.1088/1361-6587/ac4854

Authors are grateful to: Antonio Castaldo (ENEA), Lori Gabelleri (DTT), Matteo Iafrati (ENEA)

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

Agenzia nazionale per le nuove tecnologie. Tenergia e lo sviluppo economico sostenibile