Italian National Agency for New Technologies, **Energy and Sustainable Economic Development**

Radiation-induced photoluminescent colour centres in lithium fluoride films for the detection of monochromatic hard X-rays

M.A. Vincenti¹, R.M. Montereali^{1,2}, E. Nichelatti³, V. Nigro¹, M. Piccinini¹, M. Koenig⁴, P. Mabey⁵, G. Rigon^{4,6}, H.J. Dabrowski⁴, Y. Benkadoum⁴, P. Mercere⁷, P. Da Silva⁷, T. Pikuz⁸, N. Ozaki⁹, E.D. Filippov¹⁰, S. Makarov¹⁰, S. Pikuz¹⁰, B. Albertazzi⁴

¹ENEA C.R. Frascati, Nuclear Department, Via E. Fermi, 45, 00044 Frascati (RM), Italy

²Present address: V. A. Cassani, 39 00046 Grottaferrata (RM), Italy

³ENEA C.R. Casaccia, Nuclear Department, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy

⁴ LULI-CNRS, Ecole Polytechnique, CEA, Universitè Paris-Saclay, F-91128 Palaiseau Cedex, France

⁵ Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

⁶Massachusetts Institute of Technology, Cambridge, MA, United States

⁷ *SOLEIL synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint Aubin, France*

8 Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan

⁹ Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan

¹⁰Joint Institute for High Temperature RAS, Moscov 125412, Russia

7th International Conference Frontiers in Diagnostic Technologies (ICFDT7), 21 – 23 October 2024

Outline

➢ *Introduction*

Lithium fluoride: material properties and main colour centres;

Thermally-evaporated LiF film-based detectors;

LiF radiation imaging detectors: peculiarities.

➢ *LiF film-based detectors irradiated with 7 keV X-rays*

Photoluminescence response of irradiated LiF films grown on glass and Si(100) substrates; Substrate-enhanced photoluminescence of radiation-induced colour centres; Edge-enhancement X-ray imaging experiments.

➢ *Conclusions and future perspectives*

Lithium fluoride

Properties and colour centres:

- fcc ionic crystal;
- hard;
- almost non-hygroscopic;
- **D** optically transparent from 120 nm to 7 μ m (band gap \sim 14 eV);

lext irradiation by ionising radiations (X rays, γ rays, neutrons, protons etc.) gives rise to stable formation at room temperature (RT) of primary and aggregate colour centres (CCs) characterized by wide tunability and high emission quantum efficiency, even at RT;

LiF is a nearly tissue-equivalent material ($Z_{\text{eff}} = 8.1$, $Z_{\text{eff water}} = 7.5$)

Lithium fluoride \triangleright solid state tuneable lasers (Vis, NIR);

- miniaturized light sources;
- radiation detectors;

Main applications:

dosemeters.

Main physical LiF parameters $\frac{3}{3}$

M.A. Vincenti, 7th International Conference Frontiers in Diagnostic Technologies (ICFDT7), 21 – 23 October 2024

Main colour centres in LiF

F centre is an anion vacancy occupied by an electron.

 $F₂$ electronic defect consists of two nearest-neighbour F centres along a <100> direction of the cubic lattice.

M.A. Vincenti, 7th International Conference Frontiers in Diagnostic Technologies (ICFDT7), 21 – 23 October 2024

Thermally-evaporated LiF thin films

Optically-transparent polycrystalline LiF films can be grown by thermal evaporation on different substrates, in controlled conditions, tailoring the appropriate geometry, size and thickness.

crystals, Si, plastic and metal layers, etc. $_{\rm 5}$ *M.A. Vincenti, 7th International Conference Frontiers in Diagnostic Technologies (ICFDT7), 21 – 23 October 2024*

LiF radiation imaging detectors

- They are based on **optical reading** of **F²** and **F³ ⁺ photoluminescence. Main features:**
- ✓ **multi-purpose** (X-rays, protons, neutrons, electrons, etc.)
- ✓ **easy handling** (insensitive to light, no development needs)
- ✓ **efficient optical readout process** (Vis spectral range)
- ✓ **fast evaluation time** (seconds)
- \checkmark wide dynamic range ($> 10^5$)
- \checkmark high spatial resolution (intrinsic \leq 2 nm, standard \leq 250 nm)
- \checkmark large field of view (> 1 cm²)
- ✓ **PL signal stability** (signal stability at RT, multiple evaluations without signal loss)
- \checkmark reusability (after thermal annealing process).

X-rays irradiation conditions and samples

Spectrally-integrated PL vs Dose

PL response vs. Dose of LiF film detectors grown on glass (a) and Si(100) (b) substrates irradiated with monochromatic 7 keV X-rays, together with their linear best fit.

The PL response of LiF film detectors linearly depends on the irradiation dose in the investigated dose range;

 \checkmark At the same irradiation dose, the PL intensity increases with the film thickness;

Lowest detected dose $= 13$ Gy, delivered to the thinnest LiF film;

The ratios of the slopes of the best-fit straight lines for the films grown on Si(100) to those on glass in the same deposition run is \sim 1.5. This corresponds to a PL enhancement of about 50%, due to the reflectivity of the silicon substrate in the visible spectral range, where the absorption and emission bands of the F_2 and F_3^+ CCs are located.

M.A. Vincenti et al., ECS Journal of Solid State Science and Technology, 2023 12 066008

Edge-enhancement X-ray imaging experiments

Fluorescence image of the test mesh stored in the LiF film grown on glass, thickness 1.8 μ m, dose \sim 4×10³ Gy (objective magnification 10x, bar size 100 µm).

Mesh pitch \sim 41 µm

M.A. Vincenti, 7th International Conference Frontiers in Diagnostic Technologies (ICFDT7), 21 – 23 October 2024

Spatial resolution of LiF detectors

Fluorescence image of the Au mesh stored in the 1.8 µm thick LiF film grown on glass irradiated with 7 keV X-rays, dose = 3.8×10^3 Gy (objective magnification $100\times$, $bar size = 20 \mu m$

Half Width at Half Maximum = (0.38 ± 0.05) **µm**

M.A. Vincenti, 7th International Conference Frontiers in Diagnostic Technologies (ICFDT7), 21 – 23 October 2024 10

Conclusions and future perspectives

- ✓ The PL response of LiF film-based detectors of increasing thicknesses, irradiated with 7 keV X-rays at different doses, was measured using a fluorescence microscope.
- \checkmark The PL response shows a linear behavior in the investigated dose range (13 ÷ 4.5×10³) Gy) both for LiF films grown on glass and Si(100) substrate.
- \checkmark The lowest detected dose was of 13 Gy.
- \checkmark A substrate-enhanced PL response amplified by 50% was obtained for LiF film detectors grown on Si(100) with respect to those deposited on glass in the same deposition run.
- \checkmark In edge-enhancement imaging experiments, a submicrometric (\lt 0.5 µm) spatial resolution was obtained on a large field of view $($ > 1 cm²).
- \checkmark Further experiments with monochromatic X-rays at energies of several keV are under way to study the LiF film sensitivity and their RPL dose response and improve the reproducibility of the observed behavior by a careful control of the film growth conditions.

Thanks for your attention!

aurora.vincenti@enea.it

This research is partially carried out within the TECHEA - Technologies for Health ENEA project.

